Non- Resonant Reaction Rate for 15N (p,γ)16O  Reaction

Main Article Content

Fatimah Fadhil Abd Ali
https://orcid.org/0009-0006-9331-1538
Ahmed Abdul-Razzaq Selman

Abstract

Light isotopes, especially closed-shell nuclei, have significance in thermonuclear reactions of the Carbon-Nitrogen-Oxygen (CNO) cycle in stars. In this research, radiative proton capture of 15N(p,γ)16O was calculated using MATLAB codes to find the reaction rate across a temperature range up to 10 GK for the spectrum's non-resonant part, and the astrophysical S- factor S(E) only at low energies (E=70 keV). The findings were compared with conventional reactions before and after statistical analyses, and the results were acceptable when compared to earlier compilations and reference libraries. For temperatures 0.07 < T9 < 0.09, current direct data cover 50-90 % of the region under the Gamow peak. At T9 < 0.15, non-resonant capture becomes more important, and the current rate is up to 40 % lower than NACRE-II due to lower S factor values than the NACRE-II extrapolation. For energies E < 70 keV, a linear relationship for the S-factor was assumed.

Received: Oct.13, 2024 Revised:  Nov. 06, 2024 Accepted:Nov. 23, 2024

Article Details

Section

Articles

How to Cite

1.
Abd Ali FF, Selman AA-R. Non- Resonant Reaction Rate for 15N (p,γ)16O  Reaction. IJP [Internet]. 2025 Dec. 1 [cited 2025 Dec. 1];23(4):17-2. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1347

References

1. M. Wiescher, J. Görres, E. Uberseder, G. Imbriani, and M. Pignatari., Annu. Rev. Nucl. Part. Sci. 60, 381 (2010). https://doi.org/10.1146/annurev.nucl.012809.104505.

2. M. Wiescher, F. Käppeler, and K. Langanke, Annu. Rev. Astron. Astrophys., 50, 165 (2012). https://doi.org/10.1146/annurev-astro-081811-125543.

3. C. R. Brune and B. Davids, Annu. Rev. Nucl. Part. Sci., 65, 87 (2015). https://doi.org/10.1146/annurev-nucl-102014-022027.

4. M. Wiescher, H. W. Becker, J. Görres, K.U. Kettner, H.P. Trautvetter, W.E. Kieser, C. Rolfs, R.E. Azuma, K.P. Jackson, and J.W. Hammer, Nucl. Phys., A 349, 165 (1980). https://doi.org/10.1016/0375-9474(80)90451-0.

5. C. A. Barnes, D. D. Clayton, D. N. Schramm, Essays in Nuclear Astrophysics. Presented to William A. Fowler, Cambridge University Press. United Kingdom (1982).

6. M. Arnould and S. Goriely, Prog. Part. Nucl. Phys. 112, 103766 (2020). https://doi.org/10.1016/j.ppnp.2020.103766.

7. M. Wiescher, J. G¨orres, E. Uberseder, G. Imbriani, and M.Pignatari, Annu. Rev. Nucl.Part. Sci., 60, 381 (2010). https://doi.org/10.1146/annurev.nucl.012809.104505.

8. A. Boeltzig, C. G. Bruno, F. Cavanna, S. Cristallo, T. Davinson, R. Depalo, R. J. deBoer, A. Di Leva, F. Ferraro, G. Imbriani, P. Marigo, F. Terrasi, and M. Wiescher, Eur. Phys. J., A 52, 75 (2016). https://doi.org/10.1140/epja/i2016-16075-4.

9. A. Caciolli, C. Mazzocchi, V. Capogrosso, D. Bemmerer, C. Broggini, P. Corvisiero, H. Costantini, Z. Elekes, A. Formicola, Z. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino, G. Gyürky, G. Imbriani, M. Junker, A. Lemut, M. Marta, R. Menegazzo, S. Palmerini, P. Prati, V. Roca, C. Rolfs, C. R. Alvarez, E. Somorjai, O. Straniero, F. Strieder, F. Terrasi, H. P. Trautvetter, and A. Vomiero, Astron. Astrophys., A 66, 533 (2011). https://doi.org/10.1051/0004-6361/201117475.

10. G. R. Caughlan and W. A. Fowler, Astrophys. J., 136, 453 (1962). https://doi.org/10.1086/147399.

11. M. J. Harris, W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, ,Ann. Rev. Astron. Astrophys., 21, 165 (1983). https://doi.org/10.1146/annurev.aa.21.090183.001121.

12. G. R. Caughlan and W. A. Fowler, Atomic Data and Nucl. Data Tables 40, 283 (1988). https://doi.org/10.1016/0092-640X(88)90009-5.

13. D. Hebbard, Nucl. Phys., 15, 289 (1960). https://doi.org/10.1016/0029-5582(60)90308-4.

14. C. Rolfs and W. S. Rodney, Nucl. Phys., A 235, 450 (1974). https://doi.org/10.1016/0375-9474(74)90205-X.

15. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. L.Willain, A. Coc, S. Barhoumi , P. Aguer, C. Rolfs, R. Kunz, J.W. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S. Degl'Innocenti, G. Fiorentini, B. Ricci, and M. L. Rachti, Nucl. Phys., A 656, 3 (1999). https://doi.org/10.1016/S0375-9474(99)00030-5.

16. K. R. Lang, Astrophysical Formulae, 1st ed.; Springer-Verlag, Berlin. Heidelberg, New York, p. 375, (1974).

17. M. Wiescher, J. G¨orres, and H. Schatz, J. Phys. G: Nucl. Part. Phys. 25, R133 (1999). https://doi.org/10.1088/0954-3899/25/6/201.

18. C. Iliadis, Nuclear Physics of Stars, John Wiley & Sons, (2015).

19. C.Angulo, Experimental tools for nuclear astrophysics, Springer, Berlin, Heidelberg, p.253, (2009).

20. A. Formicola and G.Imbriani, Europ. Phys. Journal, A 134, 89 (2019). https://doi.org/10.1140/EPJP%2FI2019-12497-1.

21. L. T. Ali and A. A. Selman, Iraqi J. Sci., 62, 5 (2021). https://doi.org/10.24996/10.24996/ijs.2021.62.5.36.

22. L. T. Ali, Ph.D. Thesis,University of Baghdad, 2021.

23. A. A. Selman, Iraqi J. Sci., 64, 5 (2023). https://doi.org/10.24996/ijs.2023.64.5.42.

24. T. Liolios, Phys. Rev., C 63, 045801(2001). https://doi.org/10.48550/arXiv.nucl-th/0009071.

25. NACRE II Library, Available http://www.astro.ulb.ac.be/nacreii/index.html, (accessed 15th July 2024).

26. Y. Xu, K .Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya, Nucl. Phys., A 918 (2013). https://doi.org/10.1016/j.nuclphysa.2013.09.007.

27. G. Stasińska, EPE Sci., 54, 187 (2012). https://doi.org/10.1051/eas/1254003.

Similar Articles

You may also start an advanced similarity search for this article.