Cytotoxic Activity of CuO NPs Prepared by PLAL Against Liver Cancer (Hep-G2) Cell Line and HdFn Cell Lines
Main Article Content
Abstract
A simple physical technique was used in this study to create stable and cost-effective copper oxide (CuO) nanoparticles from pure copper metal using the pulsed laser ablation technique. The synthesis of crystalline CuO nanoparticles was confirmed by various analytical techniques such as particle concentration measurement using atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FE-SEM), the energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to determine the crystal size and identify of the crystal structure of the prepared particles. The main characteristic diffraction peaks of the three samples were consistent. The corresponding 2θ is also consistent, and the cytotoxicity of the nanoparticles was also investigated. After 24 hours of exposure, the percentage of cytotoxicity was calculated. The maximum toxicity of Hep-G2 was 37.81% at the maximum concentration of (500) µg mL-1 after 24 hours of exposure. Also, the maximum toxicity of the normal cell line was 27.85% at a maximum concentration of (500) µg mL-1.
Received: Jan. 01, 2023
Accepted: Apr. 04, 2023
Published: Jun. 01,2023
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
M. Bagherzadeh, M. Safarkhani, A. M. Ghadiri, M. Kiani, Y. Fatahi, F. Taghavimandi, H. Daneshgar, N. Abbariki, P. Makvandi, and R. S. Varma, Sci. Rep. 12, 15351 (2022).
F. A. Bezza, S. M. Tichapondwa, and E. M. Chirwa, Sci. Rep. 10, 16680 (2020).
Y. Ma, Laser Technology and its Applications. (London, UK, IntechOpen, 2019).
J. O. Ighalo, P. A. Sagboye, G. Umenweke, O. J. Ajala, F. O. Omoarukhe, C. A. Adeyanju, S. Ogunniyi, and A. G. Adeniyi, Envir. Nanotech., Monit. Manag. 15, 100443 (2021).
C. Petridis, K. Savva, E. Kymakis, and E. Stratakis, J. Coll. Interf. Sci. 489, 28 (2017).
S. N. Mazhir, N. A. Abdullah, A. F. Rauuf, A. H. Ali, and H. I. Al-Ahmed, Bagh. Sci. J. 15, 81 (2018).
Z. Yan, R. Bao, and D. B. Chrisey, Phys. Chemis. Chem. Phys. 15, 3052 (2013).
B. Bai, S. Saranya, V. Dheepaasri, S. Muniasamy, N. S. Alharbi, B. Selvaraj, V. S. Undal, and B. M. Gnanamangai, J. King Saud Univer.-Sci. 34, 102120 (2022).
J. M. Gaucin-Delgado, A. Ortiz-Campos, L. G. Hernandez-Montiel, M. Fortis-Hernandez, J. J. Reyes-Pérez, J. A. Gonzáles-Fuentes, and P. Preciado-Rangel, Plants 11, 912 (2022).
N. Acacia, F. Barreca, E. Barletta, D. Spadaro, G. Currò, and F. Neri, Appl. Surf. Sci. 256, 6918 (2010).
D. Alagarasan, A. Harikrishnan, M. Surendiran, K. Indira, A. S. Khalifa, and B. H. Elesawy, Appl. Nanosci., 1 (2021).
N. K. Abdalameer and S. N. Mazhir, Inter. J. Nanosci. 20, 2150044 (2021).
L. S. Alqarni, M. D. Alghamdi, A. A. Alshahrani, and A. M. Nassar, J. Chem. 2022, 1 (2022).
Z. Alhalili, Arab. J. Chem. 15, 103739 (2022).
R. Katwal, H. Kaur, G. Sharma, M. Naushad, and D. Pathania, J. Indus. Engin. Chem. 31, 173 (2015).
S. Nations, M. Long, M. Wages, J. D. Maul, C. W. Theodorakis, and G. P. Cobb, Chemosphere 135, 166 (2015).
S. N. Mazhir, K. A. Aadim, M. M. Al-Halbosiy, and N. K. Abdalameer, Indian J. Foren. Medic. Toxic. 15, 2072 (2021).
Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, Prog. Mat. Sci. 60, 208 (2014).
V. A. Arzumanian, O. I. Kiseleva, and E. V. Poverennaya, Inter. J. Molec. Sci. 22, 13135 (2021).
S. Khorrami, A. Zarrabi, M. Khaleghi, M. Danaei, and M. Mozafari, Inter. J. Nanomedic. 13, 8013 (2018).
M. Ott, V. Gogvadze, S. Orrenius, and B. Zhivotovsky, Apoptosis 12, 913 (2007).
A. Wongrakpanich, I. A. Mudunkotuwa, S. M. Geary, A. S. Morris, K. A. Mapuskar, D. R. Spitz, V. H. Grassian, and A. K. Salem, Envir. Sci.: Nano 3, 365 (2016).