Non- Resonant Reaction Rate for 15N (p,γ)16O Reaction
Main Article Content
Abstract
Light isotopes, especially closed-shell nuclei, have significance in thermonuclear reactions of the Carbon-Nitrogen-Oxygen (CNO) cycle in stars. In this research, radiative proton capture of 15N(p,γ)16O was calculated using MATLAB codes to find the reaction rate across a temperature range up to 10 GK for the spectrum's non-resonant part, and the astrophysical S- factor S(E) only at low energies (E=70 keV). The findings were compared with conventional reactions before and after statistical analyses, and the results were acceptable when compared to earlier compilations and reference libraries. For temperatures 0.07 < T9 < 0.09, current direct data cover 50-90 % of the region under the Gamow peak. At T9 < 0.15, non-resonant capture becomes more important, and the current rate is up to 40 % lower than NACRE-II due to lower S factor values than the NACRE-II extrapolation. For energies E < 70 keV, a linear relationship for the S-factor was assumed.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. M. Wiescher, J. Görres, E. Uberseder, G. Imbriani, and M. Pignatari., Annu. Rev. Nucl. Part. Sci. 60, 381 (2010). https://doi.org/10.1146/annurev.nucl.012809.104505.
2. M. Wiescher, F. Käppeler, and K. Langanke, Annu. Rev. Astron. Astrophys., 50, 165 (2012). https://doi.org/10.1146/annurev-astro-081811-125543.
3. C. R. Brune and B. Davids, Annu. Rev. Nucl. Part. Sci., 65, 87 (2015). https://doi.org/10.1146/annurev-nucl-102014-022027.
4. M. Wiescher, H. W. Becker, J. Görres, K.U. Kettner, H.P. Trautvetter, W.E. Kieser, C. Rolfs, R.E. Azuma, K.P. Jackson, and J.W. Hammer, Nucl. Phys., A 349, 165 (1980). https://doi.org/10.1016/0375-9474(80)90451-0.
5. C. A. Barnes, D. D. Clayton, D. N. Schramm, Essays in Nuclear Astrophysics. Presented to William A. Fowler, Cambridge University Press. United Kingdom (1982).
6. M. Arnould and S. Goriely, Prog. Part. Nucl. Phys. 112, 103766 (2020). https://doi.org/10.1016/j.ppnp.2020.103766.
7. M. Wiescher, J. G¨orres, E. Uberseder, G. Imbriani, and M.Pignatari, Annu. Rev. Nucl.Part. Sci., 60, 381 (2010). https://doi.org/10.1146/annurev.nucl.012809.104505.
8. A. Boeltzig, C. G. Bruno, F. Cavanna, S. Cristallo, T. Davinson, R. Depalo, R. J. deBoer, A. Di Leva, F. Ferraro, G. Imbriani, P. Marigo, F. Terrasi, and M. Wiescher, Eur. Phys. J., A 52, 75 (2016). https://doi.org/10.1140/epja/i2016-16075-4.
9. A. Caciolli, C. Mazzocchi, V. Capogrosso, D. Bemmerer, C. Broggini, P. Corvisiero, H. Costantini, Z. Elekes, A. Formicola, Z. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino, G. Gyürky, G. Imbriani, M. Junker, A. Lemut, M. Marta, R. Menegazzo, S. Palmerini, P. Prati, V. Roca, C. Rolfs, C. R. Alvarez, E. Somorjai, O. Straniero, F. Strieder, F. Terrasi, H. P. Trautvetter, and A. Vomiero, Astron. Astrophys., A 66, 533 (2011). https://doi.org/10.1051/0004-6361/201117475.
10. G. R. Caughlan and W. A. Fowler, Astrophys. J., 136, 453 (1962). https://doi.org/10.1086/147399.
11. M. J. Harris, W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, ,Ann. Rev. Astron. Astrophys., 21, 165 (1983). https://doi.org/10.1146/annurev.aa.21.090183.001121.
12. G. R. Caughlan and W. A. Fowler, Atomic Data and Nucl. Data Tables 40, 283 (1988). https://doi.org/10.1016/0092-640X(88)90009-5.
13. D. Hebbard, Nucl. Phys., 15, 289 (1960). https://doi.org/10.1016/0029-5582(60)90308-4.
14. C. Rolfs and W. S. Rodney, Nucl. Phys., A 235, 450 (1974). https://doi.org/10.1016/0375-9474(74)90205-X.
15. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. L.Willain, A. Coc, S. Barhoumi , P. Aguer, C. Rolfs, R. Kunz, J.W. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S. Degl'Innocenti, G. Fiorentini, B. Ricci, and M. L. Rachti, Nucl. Phys., A 656, 3 (1999). https://doi.org/10.1016/S0375-9474(99)00030-5.
16. K. R. Lang, Astrophysical Formulae, 1st ed.; Springer-Verlag, Berlin. Heidelberg, New York, p. 375, (1974).
17. M. Wiescher, J. G¨orres, and H. Schatz, J. Phys. G: Nucl. Part. Phys. 25, R133 (1999). https://doi.org/10.1088/0954-3899/25/6/201.
18. C. Iliadis, Nuclear Physics of Stars, John Wiley & Sons, (2015).
19. C.Angulo, Experimental tools for nuclear astrophysics, Springer, Berlin, Heidelberg, p.253, (2009).
20. A. Formicola and G.Imbriani, Europ. Phys. Journal, A 134, 89 (2019). https://doi.org/10.1140/EPJP%2FI2019-12497-1.
21. L. T. Ali and A. A. Selman, Iraqi J. Sci., 62, 5 (2021). https://doi.org/10.24996/10.24996/ijs.2021.62.5.36.
22. L. T. Ali, Ph.D. Thesis,University of Baghdad, 2021.
23. A. A. Selman, Iraqi J. Sci., 64, 5 (2023). https://doi.org/10.24996/ijs.2023.64.5.42.
24. T. Liolios, Phys. Rev., C 63, 045801(2001). https://doi.org/10.48550/arXiv.nucl-th/0009071.
25. NACRE II Library, Available http://www.astro.ulb.ac.be/nacreii/index.html, (accessed 15th July 2024).
26. Y. Xu, K .Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya, Nucl. Phys., A 918 (2013). https://doi.org/10.1016/j.nuclphysa.2013.09.007.
27. G. Stasińska, EPE Sci., 54, 187 (2012). https://doi.org/10.1051/eas/1254003.