Preparation of Silicon Nanowires Photocathode for Photoelectrochemical Water Splitting

Main Article Content

Zainab K. Ali
https://orcid.org/0000-0002-8702-0455
Mazin A. Mahdi

Abstract

A metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The conversion efficiency (ƞ) was 0.47 for p-SiNWs prepared with a 15-minute etching time and 0.75 for p-SiNWs prepared with a 30-minute etching time. The cyclic voltammetry (CV) experiments performed at various scan rates validated the faradic behavior of p-SiNWS prepared for 15 and 30 min of etching. Because of the slow ion diffusion and the increased scanning rate, the capacitance decreased with increasing scanning rate. Mott-Schottky (M-S) investigation showed a significant carriers concentration of 3.66×1020 cm-3. According to the results of electrochemical impedance spectroscopy (EIS), the SiNWs photocathode prepared by etching for 30 min had a charge transfer resistance of 25.27 Ω, which is low enough to enhance interfacial charge transfer.

Article Details

How to Cite
1.
Zainab K. Ali, Mazin A. Mahdi. Preparation of Silicon Nanowires Photocathode for Photoelectrochemical Water Splitting. IJP [Internet]. 2022 Dec. 1 [cited 2023 Feb. 6];20(4):66-81. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1070
Section
Articles

References

Van de Krol R. and Grätzel M., Photoelectrochemical hydrogen production. 1 ed. Vol. 90. 2012, New York: Springer.

Adib R., Murdock H.E., Appavou F., Brown A., Epp B., Leidreiter A., Lins C., Murdock H., Musolino E., and Petrichenko K., Renewables 2015 global status report, in REN21 Sec. Paris, Fr. 2015.

Lopes T., Andrade L., and Mendes A., Photoelectrochemical cells for hydrogen production from solar energy. A.A. Napoleon Enteria (Ed.) Sol. En. Sci. Eng. App, CRC Press Taylor & Francis Group, 2013: pp. 692.

Bard A.J. and Fox M.A., Artificial photosynthesis: Solar splitting of water to Hydrogen and Oxygen. Accounts of Chem. Res., 1995. 28(3): pp.141-145.

Matsuoka M., Kitano M., Takeuchi M., Tsujimaru K., Anpo M., and Thomas J.M., Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for Hydrogen production. Cata. Today, 2007. 122(1-2): pp.51-61.

Gopalakrishnan M., Gopalakrishnan S., Bhalerao G.M., and Jeganathan K., Multiband InGaN nanowires with enhanced visible photon absorption for efficient photoelectrochemical water splitting. J. Pow. Sour., 2017. 337: pp.130-136.

Chen Z., Dinh H.N., and Miller E., Photoelectrochemical water splitting. Vol. 344. 2013, New York: Springer.

Ghosh D., Roy K., Sarkar K., Devi P., and Kumar P., Surface plasmon-enhanced carbon dot-embellished multifaceted Si (111) nanoheterostructure for photoelectrochemical water splitting. ACS Appl. Mat. Inter., 2020. 12(25): pp. 28792-28800.

Abe R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobio. C: Photochem. Rev., 2010. 11(4): pp.179-209.

Li Z., Luo W., Zhang M., Feng J., and Zou Z., Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. En. Envi. Sci., 2013. 6(2): pp. 347-370.

Abdulelah H., Ali B., Mahdi M.A., Hassan J.J., Al-Taay H.F., and Jennings P., Fabrication and characterization of nanowalls CdS/dye sensitized solar cells. Phys. E: L.-dimen. Sys. Nanos., 2017. 90: pp. 104-108.

Kadhim M.J., Mahdi M.A., Hassan J.J., and Al-Asadi A.S., Photocatalytic activity and photoelectrochemical properties of Ag/ZnO core/shell nanorods under low-intensity white light irradiation. Nanotech., 2021. 32(19): pp.195706.

Bashkany Z.A., Abbas I.K., Mahdi M.A., Al-Taay H.F., and Jennings P., A self-powered heterojunction photodetector based on a PbS nanostructure grown on porous silicon substrate. Silicon, 2018. 10(2): pp.403-411.

Mahdi M.A., Abdul-Hameed A., Ali B., and Al-Taay H.F., Fabrication of SiNWs/PEDOT: PSS heterojunction solar cells. Ir. J. Mat. Sci. Eng., 2020. 17(1): pp.69-76.

Li X., Electroless etched silicon nanostructures for solar energy conversion, Thesis, Halle (Saale), Universitäts-und Landesbibliothek Sachsen-Anhalt, Diss., 2013.

Chen Z., Ning M., Ma G., Meng Q., Zhang Y., Gao J., Jin M., Chen Z., Yuan M., and Wang X., Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting. Nanotech., 2017. 28(27): pp.275401(1-9).

Chunqian Z., Chuanbo L., and Zhi L., Enhanced photoluminescence from porous Silicon nanowire arrays [J]. Nano. Res. Lett., 2013. 8: pp.277(1-4).

Cardon F. and Gomes W.P., On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. J. Phys. D: Appl. Phys., 1978. 11(4): pp. L(63-67).

Xin C., Wang Y., Zhang S., Xu L., Yu Y., Xiang H., Wu W., and Hua J., Energy band transition and voltage compensation via surface stoichiometry alteration in p‐type dye‐sensitized solar cells. Phys. Stat. Sol. –Rap. Res. Lett., 2017. 11(10): pp. 700258(1-6).

Wang L.C., De Tacconi N.R., Chenthamarakshan C.R., Rajeshwar K., and Tao M., Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Th. Sol. Fil., 2007. 515(5): pp. 3090-3095.

Rai S., Bhujel R., Mondal M.K., Swain B.P., and Biswas J., Study of the morphological, optical, structural and electrical properties of Silicon nanowires at varying concentrations of the catalyst precursor. Mat. Advan., 2022. 3(6): pp. 2779-2785.

Sim U., Jeong H.-Y., Yang T.-Y., and Nam K.T., Nanostructural dependence of hydrogen production in silicon photocathodes. J. Matt. Chem. A, 2013. 1(17): pp. 5414-5422.

Sim Y., John J., Moon J., and Sim U.K., Photo-assisted hydrogen evolution with reduced graphene oxide catalyst on silicon nanowire photocathode. Appl. Sci., 2018. 8(11): pp.2046(1-12).

Wu C., Yin M., Zhang R., Li Z., Zou Z., and Li Z., Further studies of photodegradation and photocatalytic Hydrogen production over Nafion-coated Pt/P25 sensitized by Rhodamine B. Int. J. Hyd. En., 2020. 45(43): pp.22700-22710.

Ali A.A., Nazeer A.A., Madkour M., Bumajdad A., and Al Sagheer F., Novel supercapacitor electrodes based semiconductor nanoheterostructure of CdS/rGO/CeO2 as efficient candidates. Ar. J. chem., 2018. 11(5): pp.692-699.

Kumar S., Aziz S.K.S., Kumar S., Riyajuddin S.K., Yaniv G., Meshi L., Nessim G.D., and Ghosh K., Three-dimensional graphene-decorated copper-phosphide ([email protected] 3DG) heterostructure as an effective electrode for a supercapacitor. Fron. Mat., 2020. 7: pp.30(1-11).

Qi H., Bo Z., Yang S., Duan L., Yang H., Yan J., Cen K., and Ostrikov K.K., Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. En. Stor. Mat., 2019. 16: pp. 607-618.

Song B., Wang X., Xin C., Zhang L., Song B., Zhang Y., Wang Y., Wang J., Liu Z., and Sui Y., Multiferroic properties of Ba/Ni co-doped KNbO3 with narrow band-gap. J. All. Comp., 2017. 703: pp.67-72.

Meng H., Fan K., Low J., and Yu J., Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical Hydrogen evolution. Dalt. Trans., 2016. 45(35): pp.13717-13725.

Qiao L., Liao M., Fang K., He X., and Zhang Y., Enhancement of photoelectrochemical Hydrogen evolution of p-type silicon nanowires array by loading MoS2. Silicon, 2019. 11(4): pp.1963-1970.

Joe J., Yang H., Bae C., and Shin H., Metal chalcogenides on silicon photocathodes for efficient water splitting: A mini overview. Catalysts, 2019. 9(2): pp.149(1-37).

Ramadan R. and Martín-Palma R.J., Electrical characterization of MIS Schottky barrier diodes based on nanostructured porous Silicon and Silver nanoparticles with applications in solar cells. Energies, 2020. 13(9): pp.2165(1-15).

Riveros G., León M., and Ramírez D., Effect of chloride ions on the structural, optical, morphological, and electrochemical properties of Cu2O films electrodeposited on Fluorine-doped tin Oxide substrate from a DMSO solution. J. Chil. Chem. Soci., 2016. 61(4): pp.3219-3223.