Bandwidth Improvement of a Cone-Inverted Cylindrical and Cross Hybrids Dielectric Resonator Antennas
Main Article Content
Abstract
This work employs the coaxial probe method to stack and excite two cone-inverted cylindrical and cross-hybrid dielectric resonator antennas at a standard operating resonant frequency of 5.438 GHz. A drawback of these standard Dielectric Resonator Antennas (DRAs) is their narrow bandwidth. For good antenna performance, a stacked DR geometry and a thick dielectric substrate with a low dielectric constant are desired since this provides large bandwidth, better radiation power, reduces conductor loss and reduces the nonappearance of surface waves. Many approaches, such as changing the shape of the dielectric resonator, have been used to enhance bandwidth. Using DRA, which has the lowest dielectric constant, increases the bandwidth and the electromagnetic energy. In the current work, bandwidth improvement was significantly achieved by the proposed geometry by varying the antenna size. A novel hybrid DRA configuration is used to increase the bandwidth of the antenna to 89.27% and 149.23% due to cone-inverted cylindrical and cross-hybrid dielectric resonator antennas, respectively. The DRA is designed numerically via the Finite Difference Time Domain (FDTD) method. Several parameters like return loss, input impedance (verified at ) and radiation pattern are calculated. Furthermore, the stacked-hybrid technique is used to enhance the antenna's performance, which is useful for broadband communication and the demand for wireless.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
References
R. J. H. O. I. J. O. T. I. Mishra, HCTL Open Inter. J. Tech. Innov. Res. 21, 39 (2016).
U. E. Jallod, H. S. Mahdi, and K. M. Abood, Iraqi J. Phys. 20, 37 (2022).
N. Rajasekhar, R. R. Reddy, R. Kumari, and R. Sowjanya, IEEE Indian Conference on Antennas and Propogation (InCAP) (IEEE, 2019). p. 1.
S. Kohar, S. Singh, and A. De, IETE J. Res., 1 (2021).
A. Al-Azza, N. A. Malalla, F. J. Harackiewicz, and K. Han, Prog. Electromag. Res. Lett. 79, 79 (2018).
B. Liu, J. Qiu, L. Chen, and G. Li, Electronics 8, 472 (2019).
H. Gharsallah, L. Osman, and L. Latrach, Microw. Opt. Tech. Lett. 59, 1913 (2017).
D. Soren, R. Ghatak, R. K. Mishra, and D. Poddar, Prog. Electromag. Res. B 60, 195 (2014).
S. Keyrouz and D. Caratelli, Intern. J. Anten. Propag. 2016, 6075680 (2016).
S. Fakhte, H. Oraizi, and L. Matekovits, IEEE Antennas Wireless Propag. Lett. 16, 2167 (2017).
H. Gharsallah, L. Osman, and L. Latrach, 2018 18th Mediterranean Microwave Symposium (MMS) (IEEE, 2018). p. 51.
A. L. Yusof, H. Halim, N. Ya'acob, and N. H. M. Hanapiah, Bagh. Sci. J. 18, 1378 (2021).
S. Thirakoune, A. Petosa, and A. Ittipiboon, 2007 International Conference on Electromagnetics in Advanced Applications (IEEE, 2007). p. 891.
M. Khalily, M. K. A. Rahim, and A. A. Kishk, IEEE Antennas Wireless Propag. Lett. 10, 393 (2011).
Y. Gao, Z. Feng, and L. Zhang, IEEE trans. antennas Propag. 60, 1611 (2011).
Y. He, Y. Lin, C. Deng, and Z. Feng, IEEE Trans. Antennas Propag. 63, 5874 (2015).
D. Guha, D. Ganguly, S. George, C. Kumar, M. Sebastian, and Y. M. Antar, IEEE Antennas Propag. Mag. 59, 139 (2017).
L. Zou, Thesis, The University of Electronic Science and Technology of China, (2013).
G. Almpanis, C. Fumeaux, J. Frohlich, and R. Vahldieck, IEEE Antennas Wireless Propag. Lett. 8, 279 (2008).
L. C. Godara, Handbook of Antennas in Wireless Communications. (Boca Raton, CRC press, 2018).
N. A. Areebi, Z. A. Ahmed, and M. M. Aubais, J. Kufa-Phys. 12, 1 (2020).
E. Atef and V. Demir, The Finite Difference Time Domain Method for Electromagnetics: With MATLAB Simulations. 2009, Har/Cdr Edition, SciTech Publishing: North Carolina.
K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics. (USA, CRC press, 1993).
S. V. Rani, M. Sujatha, R. Surinaidu, R. V. Lakshmi, and L. Balaji, IOSR J. Elect. Commun. Eng. 11, 61.