Study of the Optical Properties of 3MPA CdTe and 3MPA CdTe/CdSe Quantum Dots at PH 12 in Different Periods of Time

Main Article Content

Husham N Noori
Ameer F. Abdulameer


This research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers around CdTe QDs during growth stages, which could potentially induce quenching in the emission spectrum. The optical examinations unveiled a discernible redshift towards higher wavelength values as the reaction progressed. This spectral shift was coupled with an enlargement in QDs size and a decrease in the energy gap. Using PL and UV analysis techniques enabled a comprehensive study of the optical attributes of the CdTe and CdTe/CdSe QD systems. Our findings underscored the influence of growth conditions and shell materials on the optical properties of QDs. The observed changes in absorbance, peak intensity, wavelength values, QDs size, and energy gap with increasing reaction time provided valuable insights into the growth dynamics of these QD structures.

Article Details

How to Cite
Study of the Optical Properties of 3MPA CdTe and 3MPA CdTe/CdSe Quantum Dots at PH 12 in Different Periods of Time. IJP [Internet]. 2023 Dec. 1 [cited 2024 Mar. 5];21(4):77-83. Available from:

How to Cite

Study of the Optical Properties of 3MPA CdTe and 3MPA CdTe/CdSe Quantum Dots at PH 12 in Different Periods of Time. IJP [Internet]. 2023 Dec. 1 [cited 2024 Mar. 5];21(4):77-83. Available from:


H. N. Noori and A. F. Abdulameer, Chem. Methodol. 6, 842 (2022).

M. a. H. Al-Beayaty, Iraqi J. Sci. 62, 4323 (2021).

N. K. Abass, Z. J. Shanan, T. H. Mohammed, and L. K. Abbas, Baghdad Sci. J. 15, 0198 (2018).

R. Al-Obaidy, A. J. Haider, S. Al-Musawi, and N. Arsad, Sci. Rep. 13, 3180 (2023).

A. I. Ekimov, J. E. T. P. Lett. 34, 345 (1981).

S. Baskoutas and A. F. Terzis, J. Appl. Phys. 99, 013708 (2006).

S. Chaturvedi, P. N. Dave, and N. K. Shah, J. Saudi Chem. Soci. 16, 307 (2012).

H. Asano, S. Tsukuda, M. Kita, S. Fujimoto, and T. Omata, A. C. S. omega 3, 6703 (2018).

S. Xiaofang, Micro. Nano Lett. 7, 137 (2012).

G. E. J. Poinern, A Laboratory Course in Nanoscience and Nanotechnology (Perth, Western Australia, CRC Press, 2014).

Y. Zheng, S. Gao, and J. Y. Ying, Advan. Mat. 19, 376 (2007).

M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. L. Rogach, and H. Weller, J. Appl. Phys. 87, 2297 (2000).

W. Chen, A. G. Joly, and S. Wang, Encyclop. Nanosci. Nanotech. 4, 689 (2004).

S. Kini, S. D. Kulkarni, V. Ganiga, T. Nagarakshit, and S. Chidangil, Mat. Res. Bullet. 110, 57 (2019).

P. Sarkar, M. Springborg, and G. Seifert, Chem. Phys. Lett. 405, 103 (2005).

J. Li and L.-W. Wang, Appl. Phys. Lett. 84, 3648 (2004).

N. Mcelroy, R. Page, D. Espinbarro-Valazquez, E. Lewis, S. Haigh, P. O'brien, and D. Binks, Thin Sol. Fil. 560, 65 (2014).

A. Ayyaswamy, S. Ganapathy, A. Alsalme, A. Alghamdi, and J. Ramasamy, Superlatt. Microstruc. 88, 634 (2015).

N. Kumar and S. Kumbhat, Essentials in Nanoscience and Nanotechnology (Hoboken, New Jersey, USA, John Wiley & Sons, 2016).

J. M. Baruah and J. Narayan, Mat. Res. Expr. 6, 095082 (2019).

N. Husham, N. Noori, and F. A. Ammer, Iraqi J. Sci. 64, 1 (2023).

Z. M. Khan, S. A. Khan, and M. Zulfequar, Mat. Sci. Semicon. Proce. 57, 190 (2017).

A. M. Smith, H. Duan, A. M. Mohs, and S. Nie, Advan. Drug Deliv. Rev. 60, 1226 (2008).

M. Green, J. Mat. Chem. 20, 5797 (2010).

J. W. Kyobe, E. B. Mubofu, Y. M. Makame, S. Mlowe, and N. Revaprasadu, New J. Chem. 39, 7251 (2015).

C. Ge, M. Xu, J. Liu, J. Lei, and H. Ju, Chem. Communic. 2008, 450 (2008).

B. Gao, C. Shen, Y. Yang, S. Yuan, and G. Chen, in International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) Proceedings (Antalya, Turkey Springer, 2014). p. 9.

S. Mustapha, M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib, A. Mohammed, and A. Sumaila, Advan. Nat. Sci. Nanosci. Nanotech. 10, 045013 (2019).

V. Ncapayi, S. O. Oluwafemi, S. P. Songca, and T. Kodama, MRS Online Proce. Lib. 1748, 69 (2015).

P. Roy, M. Virmani, and P. P. Pillai, Chem. Sci. 14, 5167 (2023).

C. De Mello Donega, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh, and A. Meijerink, J. Phys.l Chem. B 107, 489 (2003).

A. M. Kadim and W. R. Saleh, Iraqi J. Sci. 58, 1207 (2017).

S. Kiprotich, M. O. Onani, and F. B. Dejene, Phys. B: Conden. Matt. 535, 202 (2018).

Y. Lv, Y. Cheng, K. Lv, G. Zhang, and J. Wu, Micromachines 13, 788 (2022).

D. Das and R. K. Dutta, J. Photochem. Photobio. A: Chem. 400, 112709 (2020).

N. Mntungwa, P. V. Rajasekhar, and N. Revaprasadu, Mat. Chem. Phys. 126, 500 (2011).

O. S. Oluwafemi, O. A. Daramola, and V. Ncapayi, Mat. Lett. 133, 9 (2014).

W. Mao, J. Guo, W. Yang, C. Wang, J. He, and J. Chen, Nanotechnology 18, 485611 (2007).

S. Subramanian, S. Ganapathy, M. Rajaram, and A. Ayyaswamy, Mat. Chem. Phys. 249, 123127 (2020).

B. J. Kumar and H. Mahesh, Superlatt. Microstruc. 104, 118 (2017).

F. A. Hassan, A. N. Naje, and R. K. Ibrahim, Iraqi J. Sci. 57, 1198 (2016).

N. Ca, N. Hien, N. Luyen, V. Lien, L. Thanh, P. Do, N. Bau, and T. Pham, J. Allo. Comp. 787, 823 (2019).

S. J. Lim, M. U. Zahid, P. Le, L. Ma, D. Entenberg, A. S. Harney, J. Condeelis, and A. M. Smith, Nat. commun. 6, 8210 (2015).

V. Ncapayi, S. Parani, S. P. Songca, T. Kodama, and O. S. Oluwafemi, Mat. Lett. 189, 168 (2017).

A. Al-Douri, Iraqi J. Phys. 9, 18 (2011).

A. M. Smith, A. M. Mohs, and S. Nie, Nat. Nanotech. 4, 56 (2009).

P. Devaraji, R. Gao, L. Xiong, X. Jia, L. Huang, W. Chen, S. Liu, and L. Mao, Int. J. Hyd. Ener. 46, 14369 (2021).

H. N. Noori and A. F. Abdulameer, Iraqi J. Sci. 64, 653 (2023).

D. Bahnemann and A. O. T. Patrocinio, Springer Handbook of Inorganic Photochemistry (Switzerland, Springer Nature, 2022).

W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mat. 15, 2854 (2003).

Similar Articles

You may also start an advanced similarity search for this article.