Study of the Optical Properties of 3MPA CdTe and 3MPA CdTe/CdSe Quantum Dots at PH 12 in Different Periods of Time
Main Article Content
Abstract
This research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers around CdTe QDs during growth stages, which could potentially induce quenching in the emission spectrum. The optical examinations unveiled a discernible redshift towards higher wavelength values as the reaction progressed. This spectral shift was coupled with an enlargement in QDs size and a decrease in the energy gap. Using PL and UV analysis techniques enabled a comprehensive study of the optical attributes of the CdTe and CdTe/CdSe QD systems. Our findings underscored the influence of growth conditions and shell materials on the optical properties of QDs. The observed changes in absorbance, peak intensity, wavelength values, QDs size, and energy gap with increasing reaction time provided valuable insights into the growth dynamics of these QD structures.
Received: May. 18,2023
Revised: Aug. 14, 2023
Accepted: Aug. 18, 2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
References
H. N. Noori and A. F. Abdulameer, Chem. Methodol. 6, 842 (2022).
M. a. H. Al-Beayaty, Iraqi J. Sci. 62, 4323 (2021).
N. K. Abass, Z. J. Shanan, T. H. Mohammed, and L. K. Abbas, Baghdad Sci. J. 15, 0198 (2018).
R. Al-Obaidy, A. J. Haider, S. Al-Musawi, and N. Arsad, Sci. Rep. 13, 3180 (2023).
A. I. Ekimov, J. E. T. P. Lett. 34, 345 (1981).
S. Baskoutas and A. F. Terzis, J. Appl. Phys. 99, 013708 (2006).
S. Chaturvedi, P. N. Dave, and N. K. Shah, J. Saudi Chem. Soci. 16, 307 (2012).
H. Asano, S. Tsukuda, M. Kita, S. Fujimoto, and T. Omata, A. C. S. omega 3, 6703 (2018).
S. Xiaofang, Micro. Nano Lett. 7, 137 (2012).
G. E. J. Poinern, A Laboratory Course in Nanoscience and Nanotechnology (Perth, Western Australia, CRC Press, 2014).
Y. Zheng, S. Gao, and J. Y. Ying, Advan. Mat. 19, 376 (2007).
M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. L. Rogach, and H. Weller, J. Appl. Phys. 87, 2297 (2000).
W. Chen, A. G. Joly, and S. Wang, Encyclop. Nanosci. Nanotech. 4, 689 (2004).
S. Kini, S. D. Kulkarni, V. Ganiga, T. Nagarakshit, and S. Chidangil, Mat. Res. Bullet. 110, 57 (2019).
P. Sarkar, M. Springborg, and G. Seifert, Chem. Phys. Lett. 405, 103 (2005).
J. Li and L.-W. Wang, Appl. Phys. Lett. 84, 3648 (2004).
N. Mcelroy, R. Page, D. Espinbarro-Valazquez, E. Lewis, S. Haigh, P. O'brien, and D. Binks, Thin Sol. Fil. 560, 65 (2014).
A. Ayyaswamy, S. Ganapathy, A. Alsalme, A. Alghamdi, and J. Ramasamy, Superlatt. Microstruc. 88, 634 (2015).
N. Kumar and S. Kumbhat, Essentials in Nanoscience and Nanotechnology (Hoboken, New Jersey, USA, John Wiley & Sons, 2016).
J. M. Baruah and J. Narayan, Mat. Res. Expr. 6, 095082 (2019).
N. Husham, N. Noori, and F. A. Ammer, Iraqi J. Sci. 64, 1 (2023).
Z. M. Khan, S. A. Khan, and M. Zulfequar, Mat. Sci. Semicon. Proce. 57, 190 (2017).
A. M. Smith, H. Duan, A. M. Mohs, and S. Nie, Advan. Drug Deliv. Rev. 60, 1226 (2008).
M. Green, J. Mat. Chem. 20, 5797 (2010).
J. W. Kyobe, E. B. Mubofu, Y. M. Makame, S. Mlowe, and N. Revaprasadu, New J. Chem. 39, 7251 (2015).
C. Ge, M. Xu, J. Liu, J. Lei, and H. Ju, Chem. Communic. 2008, 450 (2008).
B. Gao, C. Shen, Y. Yang, S. Yuan, and G. Chen, in International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) Proceedings (Antalya, Turkey Springer, 2014). p. 9.
S. Mustapha, M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib, A. Mohammed, and A. Sumaila, Advan. Nat. Sci. Nanosci. Nanotech. 10, 045013 (2019).
V. Ncapayi, S. O. Oluwafemi, S. P. Songca, and T. Kodama, MRS Online Proce. Lib. 1748, 69 (2015).
P. Roy, M. Virmani, and P. P. Pillai, Chem. Sci. 14, 5167 (2023).
C. De Mello Donega, S. G. Hickey, S. F. Wuister, D. Vanmaekelbergh, and A. Meijerink, J. Phys.l Chem. B 107, 489 (2003).
A. M. Kadim and W. R. Saleh, Iraqi J. Sci. 58, 1207 (2017).
S. Kiprotich, M. O. Onani, and F. B. Dejene, Phys. B: Conden. Matt. 535, 202 (2018).
Y. Lv, Y. Cheng, K. Lv, G. Zhang, and J. Wu, Micromachines 13, 788 (2022).
D. Das and R. K. Dutta, J. Photochem. Photobio. A: Chem. 400, 112709 (2020).
N. Mntungwa, P. V. Rajasekhar, and N. Revaprasadu, Mat. Chem. Phys. 126, 500 (2011).
O. S. Oluwafemi, O. A. Daramola, and V. Ncapayi, Mat. Lett. 133, 9 (2014).
W. Mao, J. Guo, W. Yang, C. Wang, J. He, and J. Chen, Nanotechnology 18, 485611 (2007).
S. Subramanian, S. Ganapathy, M. Rajaram, and A. Ayyaswamy, Mat. Chem. Phys. 249, 123127 (2020).
B. J. Kumar and H. Mahesh, Superlatt. Microstruc. 104, 118 (2017).
F. A. Hassan, A. N. Naje, and R. K. Ibrahim, Iraqi J. Sci. 57, 1198 (2016).
N. Ca, N. Hien, N. Luyen, V. Lien, L. Thanh, P. Do, N. Bau, and T. Pham, J. Allo. Comp. 787, 823 (2019).
S. J. Lim, M. U. Zahid, P. Le, L. Ma, D. Entenberg, A. S. Harney, J. Condeelis, and A. M. Smith, Nat. commun. 6, 8210 (2015).
V. Ncapayi, S. Parani, S. P. Songca, T. Kodama, and O. S. Oluwafemi, Mat. Lett. 189, 168 (2017).
A. Al-Douri, Iraqi J. Phys. 9, 18 (2011).
A. M. Smith, A. M. Mohs, and S. Nie, Nat. Nanotech. 4, 56 (2009).
P. Devaraji, R. Gao, L. Xiong, X. Jia, L. Huang, W. Chen, S. Liu, and L. Mao, Int. J. Hyd. Ener. 46, 14369 (2021).
H. N. Noori and A. F. Abdulameer, Iraqi J. Sci. 64, 653 (2023).
D. Bahnemann and A. O. T. Patrocinio, Springer Handbook of Inorganic Photochemistry (Switzerland, Springer Nature, 2022).
W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mat. 15, 2854 (2003).