Fabrication and Characterization of Silicon Nanowires Heterojunction Solar Cell

Main Article Content

Hana H. inaya
Mazin A. Mahdi

Abstract

Silicon nanowire arrays (SiNWs) are created utilizing the metal-assisted chemical etching method with an Ag metal as a catalyst and different etching time of 15, 30, and 60 minutes using n-Si (100). Physical properties such as structural, surface morphology, and optical properties of the prepared SiNWs are studied. The diameter of prepared SiNWs ranged from 20 to 280 nm, and the reflectance in the visible part of the wavelength spectrum was less than 1% for all prepared samples. The obtained energy gap of prepared SiNWs was around 2 eV, which is higher than the energy gap of bulk silicon. X-ray diffraction (XRD) has diffraction peaks at 68.70o for all prepared samples. The heterojunction solar cell was fabricated based on the n-SiNWs/ P3HT/PEDOT: PSS structure. The heterojunction solar cell produced for 60 minutes has the highest Jsc of 11.55 mA.cm-2 and a conversion efficiency of 0.93%. Based on SiNWs prepared for etching time of 15 min, the solar cell demonstrated Jsc and Voc of 2.73 mA/cm2 and 0.46 V, respectively, and a conversion efficiency of 0.34%.

Article Details

How to Cite
1.
Fabrication and Characterization of Silicon Nanowires Heterojunction Solar Cell. IJP [Internet]. 2023 Sep. 1 [cited 2024 Apr. 29];21(3):92-101. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1126
Section
Articles

How to Cite

1.
Fabrication and Characterization of Silicon Nanowires Heterojunction Solar Cell. IJP [Internet]. 2023 Sep. 1 [cited 2024 Apr. 29];21(3):92-101. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1126

References

M. Mahdi, J. Hassan, S. Ng, Z. Hassan, and N. M. Ahmed, Phys. E: Low-dimen. Sys. Nanostruct. 44, 1716 (2012).

M. Mahdi, J. Hassan, S. Ng, and Z. Hassan, J. Crys. Grow. 359, 43 (2012).

H. Al-Taay, M. Mahdi, D. Parlevliet, and P. Jennings, Silicon 9, 17 (2017).

V. Kashyap, C. Kumar, V. Kumar, N. Chaudhary, and K. Saxena, Phys. B: Conden. Mat. 638, 413953 (2022).

H. Li, S. Yang, J. Hu, Z. Zhang, P. Tang, Y. Jiang, L. Tang, and B. Zou, Mat. Sci. Semicond. Proces. 146, 106661 (2022).

S. M. Mishra, S. Dey, T. Singha, S. Mandal, A. K. Dehury, Y. S. Chaudhary, and B. Satpati, Mat. Res. Bull. 164, 112262 (2023).

A. Uesugi, S. Nishiyori, K. Sugano, and Y. Isono, in 36th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2023, p. 701.

G. W. Jeon, S.-H. Lee, J.-S. Jo, W. Huang, T. Fujigaya, and J.-W. Jang, Mat. Today Ener. 29, 101109 (2022).

S. Mousavi, S. Davatolhagh, and M. Moradi, Phys. E: Low-dimen. Sys. Nanostruc. 118, 113889 (2020).

G. Sandu, M. Coulombier, V. Kumar, H. G. Kassa, I. Avram, R. Ye, A. Stopin, D. Bonifazi, J.-F. Gohy, and P. Leclère, Sci. Rep. 8, 9794 (2018).

X. Song, T. Zhang, L. Wu, R. Hu, W. Qian, Z. Liu, J. Wang, Y. Shi, J. Xu, and K. Chen, Advan. Sci. 9, 2105623 (2022).

A. Lale, A. Grappin, A. Lecestre, L. Mazenq, J. Launay, and P. Temple-Boyer, Thin Sol. Fil. 764, 139609 (2023).

P. Kumar and B. Raj, Microelect. J. 137, 105826 (2023).

K.-I. Chen, B.-R. Li, and Y.-T. Chen, Nano Today 6, 131 (2011).

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).

A. A. Abdul-Hameed, M. Mahdi, B. Ali, A. M. Selman, H. Al-Taay, P. Jennings, and W.-J. Lee, Superlatt. Microstruc. 116, 27 (2018).

D. Choi, J. Lee, M. Wober, Y.-K. Kim, H.-D. Um, and K. Seo, Device 1, 100018 (2023).

A. A. Alqanoo, N. M. Ahmed, M. Hashim, M. A. Almessiere, S. A. Taya, and S. H. Zyoud, Sensors

Actuat. A: Phys. 347, 113942 (2022).

S. Amdouni, Y. Cherifi, Y. Coffinier, A. Addad, M. A. Zaïbi, M. Oueslati, and R. Boukherroub, Mat. Sci. Semicond. Proces. 75, 206 (2018).

U. Ray, S. Sarkar, and D. Banerjee, Catal. Today 423, 113964 (2022).

S.-H. Chen, K.-Y. Kuo, K.-H. Tsai, and C.-Y. Chen, Nanomat. 12, 1821 (2022).

E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).

H. Al-Taay, M. Mahdi, D. Parlevliet, and P. Jennings, Mat. Sci. Semicond. Proces. 16, 15 (2013).

H. Al-Taay, M. Mahdi, D. Parlevliet, Z. Hassan, and P. Jennings, Phys. E: Low-dimen. Sys. Nanostruct. 48, 21 (2013).

B. P. Swain, Advances in Nanostructured Materials. (Singapore, Springer, 2022).

S. Raman, A. R. Sankar, and M. Sindhuja, Nanotech. 34 182001 (2023).

Y. Lou, Z. Wang, S. Naka, and H. Okada, Phys. Proce. 14, 204 (2011).

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, Advan. Mat. 23, 285 (2011).

S. Yuvaraja, V. Kumar, H. Dhasmana, A. Kumar, A. Verma, and V. Jain, J. Mat. Sci.: Mat. Electro. 30, 7618 (2019).

A. A. Leonardi, M. J. L. Faro, and A. Irrera, Nanomat. 11, 383 (2021).

A. Adikaari, D. Dissanayake, R. Hatton, and S. Silva, Appl. Phys. Lett. 90, (2007).

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, Ener. Envir. Sci. 2, 347 (2009).

S. B. Dkhil, R. Ebdelli, W. Dachraoui, H. Faltakh, R. Bourguiga, and J. Davenas, Synth. Met. 192, 74 (2014).

Z. Ge, L. Xu, Y. Cao, T. Wu, H. Song, Z. Ma, J. Xu, and K. Chen, Nanosc. Res. Lett. 10, 1 (2015).

S. Kato, Y. Kurokawa, K. Gotoh, and T. Soga, Appl Sci. 9, 818 (2019).

N. N. Anh, N. Van Chuc, B. H. Thang, P. Van Nhat, N. Hao, D. D. Phuong, P. N. Minh, T. Subramani, N. Fukata, and P. Van Trinh, Glob. Chall. 4, 2000010 (2020).

Y. Kou, K. Liu, Z. Wang, D. Chi, S. Lu, S. Yue, Y. Li, S. Qu, and Z. Wang, RSC Advan. 5, 42341 (2015).

S. Thomas, N. Kalarikkal, O. S. Oluwafemi, and J. Wu, Nanomaterials for Solar Cell Applications. (Amsterdam, Netherlands, Elsevier, 2019).

A. A. Abdul-Hameed, M. Mahdi, B. Ali, A. M. Selman, H. Al-Taay, P. Jennings, and W.-J. Lee, Superlatt. Microstruct. 116, 27 (2018).

V. Kumar, S. K. Sharma, T. Sharma, and V. Singh, Opt. Mat. 12, 115 (1999).

Z. Bashkany, I. K. Abbas, M. Mahdi, H. Al-Taay, and P. Jennings, Silicon 10, 403 (2018).

M. Naffeti, P. A. Postigo, R. Chtourou, and M. A. Zaïbi, Nanomat. 10, 404 (2020).

Z. Kadhim and M. Mahdi, Phys. Scrip. 98, 045901 (2023).

H. Meng, K. Fan, J. Low, and J. Yu, Dalton Trans. 45, 13717 (2016).

S. Lamrani, A. Guittoum, R. Schäfer, M. Hemmous, V. Neu, S. Pofahl, T. Hadjersi, and N. Benbrahim, J. Mag. Mag. Mat. 396, 263 (2015).

S. K. Srivastava, D. Kumar, S. Schmitt, K. Sood, S. Christiansen, and P. Singh, Nanotech. 25, 175601 (2014).

M. Gaidi, K. Daoudi, S. Columbus, A. Hajjaji, M. A. El Khakani, and B. Bessais, J. Envir. Sci. 101, 123 (2021).

Y. Jiang, R. Qing, H. Yang, C. Chen, H. Ma, and F. Chang, Appl. Phys. A 113, 13 (2013).

S. Z. Khanyile, Doctor of Philosophy Thesis, University Of The Western Cape, (2021).

B. Qi and J. Wang, Phys. Chem. Chem. Phys. 15, 8972 (2013).

Similar Articles

You may also start an advanced similarity search for this article.