Characterization of Magnetized-Plasma System Induced by Laser

Main Article Content

Zahraa Marid Abbas
Qusay Adnan Abbas

Abstract

  This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced by applying a magnetic field and, on the other hand, using the 532 nm wavelength rather than the fundamental wavelength of a laser. The emission lines in the atmosphere's plasma have an appearance of Lorentzian shape. The 532 nm laser exhibited a decrease in both the Larmor radius and the confinement factor compared with the 1064 nm laser. By applying the magnetic field, the Laser Induced Breakdown Spectroscopy (LIBS) intensities increased by 1.44 times when compared to the emissions before applying the field. In addition, the spectral line intensities improved with the fundamental wavelength compared to the second harmonic frequency as a result of the increase in the extracted materials. This is due to the increase in the absorbance of the laser by the target, as some of these materials are excited, so they act as emission sources, which makes them more detectable.

Article Details

How to Cite
1.
Characterization of Magnetized-Plasma System Induced by Laser. IJP [Internet]. 2023 Dec. 1 [cited 2024 Apr. 27];21(4):45-5. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1148
Section
Articles

How to Cite

1.
Characterization of Magnetized-Plasma System Induced by Laser. IJP [Internet]. 2023 Dec. 1 [cited 2024 Apr. 27];21(4):45-5. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1148

References

J. C. Lindon, G. E. Tranter, and D. Koppenaal, Encyclopedia of Spectroscopy and Spectrometry (San Diego, USA, Academic Press, 2016).

M. Alhamadani, Iraqi J. Phys. 21, 68 (2023).

A. Hussein and H. M. Abdullah, Iraqi J. Phys. 21, 58 (2023).

S. K. H. Shah, J. Iqbal, P. Ahmad, M. U. Khandaker, S. Haq, and M. Naeem, Rad. Phys. Chem. 170, 108666 (2020).

J. Peng, F. Liu, F. Zhou, K. Song, C. Zhang, L. Ye, and Y. He, Tren. Analyt. Chem. 85, 260 (2016).

A. L. Abed and M. T. Hussein, Iraqi J. Phys. 20, 53 (2022).

D. W. Hahn and N. Omenetto, Appl. Spectro. 66, 347 (2012).

M. M. Manhil and R. K. Jamal, Iraqi J. Phys. 21, 44 (2023).

M. Rühlmann, D. Büchele, M. Ostermann, I. Bald, and T. Schmid, Spectrochim. Acta Part B: Atom. Spectro. 146, 115 (2018).

A. Ahmed, M. Salman, M. Alwazzan, and A. Meri, J. Adv. Res. Dynam. Cont. Sys. 2, 1 (2019).

Z. L. Petrović, N. Puač, S. Lazović, D. Maletić, K. Spasić, and G. Malović, in Journal of Physics: Conference Series (IOP Publishing, 2012). p. 012001.

Y. Zhang, T. Zhang, and H. Li, Spectrochim. Acta Part B: Atom. Spectro. 181, 106218 (2021).

S. N. P. Panya, A. Galmed, M. Maaza, B. Mothudi, and M. Harith, Mat. Today: Proce. 36, 600 (2021).

A. K. Myakalwar, C. Sandoval, M. Velásquez, D. Sbarbaro, B. Sepúlveda, and J. Yáñez, Minerals 11, 1073 (2021).

A. F. Rauuf and K. A. Aadim, Iraqi J. Sci. 64, 2877 (2023).

G. M. Jassam and S. S. Ahmed, Iraqi J. Phys. 21, 91 (2023).

I. Urbina, F. Bredice, C. Sanchez-Aké, M. Villagrán-Muniz, and V. Palleschi, Spectrochim. Acta Part B: Atom. Spectro. 195, 106489 (2022).

S. Amoruso, R. Bruzzese, X. Wang, and J. Xia, Appl Phys. Lett. 92, 041503 (2008).

Q. A. Abbas, Iraqi J. Sci. 60, 1251 (2019).

D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, Comb. Flame 138, 55 (2004).

Y. Ohtsu and K. Kihara, IEEE Trans. Plasma Sci. 40, 1809 (2012).

G. H. Jihad and K. A. Aadim, Iraqi J. Sci. 63, 2039 (2022).

S. E. Abdulghani and Q. A. Abbas, Iraqi J. Sci. 64, 2297 (2023).

D. Devia, L. Rodriguez-Restrepo, and E. R. Parra, Ingen. Y Cienc. 11, 239 (2015).

S. Hamed, Egypt. J. Sol. 28, 349 (2005).

A. K. Abd and Q. A. Abbas, Iraqi J. Sci. 64, 2867 (2023).

V. Unnikrishnan, K. Alti, V. Kartha, C. Santhosh, G. Gupta, and B. Suri, Pramana 74, 983 (2010).

Z. Farooq, R. Ali, U. S. Qurashi, M. H. Mahmood, M. Yaseen, M. A. Qayyum, M. N. Hussain, S. M. Shah, and T. Jan, Phys. Plasm. 25, 093106 (2018).

X.-F. Li, W.-D. Zhou, and Z.-F. Cui, Fron. Phys. 7, 721 (2012).

T. A. Hameed, H. R. Humud, and L. F. Ali, Iraqi J. Sci. 64, 2889 (2023).

M. S. Dimitrijević and S. Sahal–Bréchot, Astron. Astrophys. Suppl. Ser. 140, 193 (1999).

G. Petraconi, A. G. Neto, H. Maciel, and R. Pessoa, in Journal of Physics: Conference Series (IOP Publishing, 2012). p. 012041.

I. K. Abbas and K. A. Aadim, Iraqi J. Sci. 64, 2271 (2023).

A. L. Winfrey, M. A. Abd Al-Halim, J. G. Gilligan, A. V. Saveliev, and M. A. Bourham, IEEE Transact. Plasma Sci. 40, 843 (2012).

A. Dinklage, T. Klinger, G. Marx, and L. Schweikhard, Plasma Physics: Confinement, Transport and Collective Effects (Greifswald, Germany, Springer Science & Business Media, 2005).

C. Fallon, Thesis, Dublin City University, 2013.

Y. Lu, C. Yang, H. Wang, L. Ma, M. Xu, and L. Xi, Vacuum 211, 111912 (2023).

Z. M. Abbas and Q. Adnan, Iraqi J. Sci. 61, 341 (2020).

A. Hussain, G. Xun, H. Asghar, M. Azam, Q.-T.-. Ain, and Z. Nawaz, Opt. Spectros. 129, 452 (2021).

A. Hussain, M. Tanveer, G. Farid, M. B. Hussain, M. Azam, and W. Khan, Optik 172, 1012 (2018).

K. Reeson, S. L. Yap, S. F. Koh, C. H. Nee, T. Y. Tou, and S. S. Yap, Th. Sol. Fil. 701, 137953 (2020).

Y. Ralchenko. NIST Atomic Spectra Database; https://www.nist.gov/pml/atomic-spectra-database.

N. Bolouki, J.-H. Hsieh, C. Li, and Y.-Z. Yang, Plasma 2, 283 (2019).

F. Bredice, P. P. Martinez, C. Sánchez-Aké, and M. Villagrán-Muniz, Spectrochim. Acta Part B: Atom. Spectro. 107, 25 (2015).

A. F. Ahmed, F. a.-H. Mutlak, and Q. A. Abbas, Appl. Phys. A 128, 147 (2022).

H. Imran, K. Hubeatir, and K. Aadim, Eng. Tech. J. 40, 1307 (2022).

M. S. J. Hashmi, Comprehensive Materials Processing (USA, Newnes, 2014).

A. Dawood, S. Bashir, N. A. Chishti, M. A. Khan, and A. Hayat, Laser Par. Beams 36, 261 (2018).

P. Shustov, A. Artemyev, and E. Yushkov, Phys. Lett. A 379, 590 (2015).

G. Ganguli, C. Crabtree, A. Fletcher, and B. Amatucci, Rev. Mod. Plasma Phys. 4, 1 (2020).

V. N. Rai, H. Zhang, F. Y. Yueh, J. P. Singh, and A. Kumar, Appl. Opt. 42, 3662 (2003).

Z. Hao, Z. Deng, L. Liu, J. Shi, and X. He, Front. Optoelect. 15, 17 (2022).

J. Weng, S. Kashiwakura, and K. Wagatsuma, Analyt. Sci. 37, 367 (2021).

N. Glumac and G. Elliott, Opt. Laser Eng. 45, 27 (2007).

Z. A. Abbas and Q. A. Abbas, in AIP Conference Proceedings (AIP Publishing, 2021). p.

H. M. Fadhil, K. I. Hassoon, and H. A. Salih, J. Appl. Sci. Nanotech. 2, 85 (2022).

M. Mahmoodi-Darian, M. Ettehadi-Abari, and M. Sedaghat, J. Theo. Appl. Phys. 10, 33 (2016).

N. S. J. Braithwaite, Plasma Sour. Sci. Tech. 9, 517 (2000).

M. A. Khan, S. Bashir, N. A. Chishti, E. Bonyah, A. Dawood, and Z. J. a. A. Ahmad, AIP Advan. 13, 015017 (2023).

P. K. Pandey and R. Thareja, J. Appl. Phys. 109, 074901 (2011).

Similar Articles

You may also start an advanced similarity search for this article.