FTIR and Electrical Behavior of Blend Electrolytes Based on (PVA/PVP)

Main Article Content

Fatima ALjubouri
https://orcid.org/0009-0008-2569-077X
Mohammed Kadhim Jawad
https://orcid.org/0000-0002-5160-1645

Abstract

Polymer electrolytes were prepared using the solution cast technology. Under some conditions, the electrolyte content of polymers was analyzed in constant percent of PVA/PVP (50:50), ethylene carbonate (EC), and propylene carbonate (PC) (1:1) with different proportions of potassium iodide (KI) (10, 20, 30, 40, 50 wt%) and iodine (I2) = 10 wt% of salt. Fourier Transmission Infrared (FTIR) studies confirmed the complex formation of polymer blends. Electrical conductivity was calculated with an impedance analyzer in the frequency range 50 Hz–1MHz and in the temperature range 293–343 K. The highest electrical conductivity value of 5.3 × 10-3 (S/cm) was observed for electrolytes with 50 wt% KI concentration at room temperature. The magnitude of electrical conductivity was increased with the increase in the salt concentration and temperature. The blend electrolytes have a high dielectric constant at lower frequencies which may be attributed to the dipoles providing sufficient time to get aligned with the electric field, resulting in higher polarization. The reduction of activation energy (Ea) suggests that faster-conducting electrolyte ions want less energy to move.

Article Details

How to Cite
1.
FTIR and Electrical Behavior of Blend Electrolytes Based on (PVA/PVP). IJP [Internet]. 2023 Mar. 1 [cited 2024 Apr. 23];21(1):1-9. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1093
Section
Articles
Author Biographies

Fatima ALjubouri, University of Baghdad/ College of Science/ Department of Physics

 

 

 

 

Mohammed Kadhim Jawad, Department of Physics/ College of Science / University of Baghdad/ Baghdad/Iraq

 

 

 

How to Cite

1.
FTIR and Electrical Behavior of Blend Electrolytes Based on (PVA/PVP). IJP [Internet]. 2023 Mar. 1 [cited 2024 Apr. 23];21(1):1-9. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1093

References

N. M. Sadiq, S. B. Aziz, and M. F. Z. Kadir, Gels 8, 153 (2022).

H. Yang, Y. Liu, L. Kong, L. Kang, and F. Ran, J. Pow. Sources 426, 47 (2019).

M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, Solar Ener. 115, 452 (2015).

C. Tao, M.-H. Gao, B.-H. Yin, B. Li, Y.-P. Huang, G. Xu, and J.-J. Bao, Electrochi. Acta 257, 31 (2017).

S. N. a. M. Johari, N. A. Tajuddin, H. Hanibah, and S. K. Deraman, Int. J. Electrochem. Sci. 16, 2 (2021).

H. G. Rauf, J. M. Hadi, S. B. Aziz, R. T. Abdulwahid, and M. S. Mustafa, Int. J. Electrochem. Sci. 17, 2 (2022).

Y. Zhao, L. Wang, Y. Zhou, Z. Liang, N. Tavajohi, B. Li, and T. Li, Advan. Sci. 8, 2003675 (2021).

J. C. Barbosa, J. P. Dias, S. Lanceros-Méndez, and C. M. Costa, Membranes 8, 45 (2018).

M. Shukur, R. Ithnin, H. Illias, and M. Kadir, Optic. Mater. 35, 1834 (2013).

Y. Liu, B. Xu, W. Zhang, L. Li, Y. Lin, and C. Nan, Small 16, 1902813 (2020).

J. Wang, S. Li, Q. Zhao, C. Song, and Z. Xue, Advan. Func. Mater. 31, 2008208 (2021).

S. Jha, V. Bhavsar, K. Sooraj, M. Ranjan, and D. Tripathi, J. Advan. Dielec. 11, 2150020 (2021).

D. Akram and N. Hameed, J. Appl. Sci. Nanotech. 2, 38 (2022).

S. I. Wani and A. S. Ganie, Inorg. Chem. Commun. 128, 108567 (2021).

E. A. Swady and M. K. Jawad, Iraqi J. Phys. 19, 15 (2021).

J. O. Dennis, A. A. Adam, M. Ali, H. Soleimani, M. F. B. A. Shukur, K. Ibnaouf, O. Aldaghri, M. Eisa, M. Ibrahem, and A. Bashir Abdulkadir, Membranes 12, 706 (2022).

K. Deshmukh, M. B. Ahamed, K. K. Sadasivuni, D. Ponnamma, M. a. A. Almaadeed, R. R. Deshmukh, S. K. Pasha, A. R. Polu, and K. Chidambaram, J. Appl. Poly. Sci. 134, 44427 (2017).

N. Badi, A. M. Theodore, S. A. Alghamdi, H. A. Al-Aoh, A. Lakhouit, A. S. Roy, A. S. Alatawi, and A. Ignatiev, Polymers 14, 3837 (2022).

M. A. Jothi, D. Vanitha, N. Nallamuthu, A. Manikandan, and S. A. Bahadur, Phys. B: Conden. Matt. 580, 411940 (2020).

H. Alfannakh, Advan. Mater. Sci. Eng. 2022, 1 (2022).

D. Vanitha, S. A. Bahadur, N. Nallamuthu, A. Shunmuganarayanan, and A. Manikandan, J. Nanosci. Nanotech. 18, 1723 (2018).

M. Kadhim Jawad, Iraqi J. Phys. 17, 76 (2019).

S. Nippani, P. Kuchhal, G. Anand, and V. K. Kambila, J. Eng. Sci. Tech. 11, 1595 (2016).

M. M. Nofal, J. M. Hadi, S. B. Aziz, M. A. Brza, A. S. Asnawi, E. M. Dannoun, A. M. Abdullah, and M. F. Kadir, Materials 14, 4859 (2021).

Y. Horowitz, M. Lifshitz, A. Greenbaum, Y. Feldman, S. Greenbaum, A. P. Sokolov, and D. Golodnitsky, J. Electrochem. Soci. 167, 160514 (2020).

D. Padalia, U. Johri, and M. Zaidi, Phys. B: Conden. Matt. 407, 838 (2012).

R. Das and R. Choudhary, J. Advan. Cer. 8, 174 (2019).

C. Behera and A. Pattanaik, J. Mater. Sci.: Mater. Electro. 30, 5470 (2019).

M. S. Grewal, K. Kisu, S.-I. Orimo, and H. Yabu, Iscience 25, 104910 (2022).

A. B. J. Kharrat, N. Moutia, K. Khirouni, and W. Boujelben, Mater. Res. Bull. 105, 75 (2018).

H. Yin, C. Han, Q. Liu, F. Wu, F. Zhang, and Y. Tang, Small 17, 2006627 (2021).

S. Salehan, B. Nadirah, M. Saheed, W. Yahya, and M. Shukur, J. Poly. Res. 28, 1 (2021).

O. Nordness and J. F. Brennecke, Chem. Rev. 120, 12873 (2020).

T. Otitoju, P. Okoye, G. Chen, Y. Li, M. Okoye, and S. Li, J. Indus. Eng. Chem. 85, 34 (2020).

V. Shanthala, S. Devi, and M. Murugendrappa, IOSR: J. App. Phys. 8, 83 (2016).

Similar Articles

You may also start an advanced similarity search for this article.