Study of the Symmetry Energy and the Nuclear Equation of State for 13O -13B and 13N-13C Mirror Nuclei

Main Article Content

Rana Haithem Harith
https://orcid.org/0009-0007-6740-4092
Ban Sabah Hameed
https://orcid.org/0000-0002-4220-1543

Abstract

In parallel with the shell model using the harmonic oscillator's single-particle wave functions, the Hartree-Fock approximation was also used to calculate the neutron skin thickness, the mirror charge radii, and the differences in proton radii for 13O-13B and 13N-13C mirror nuclei. The calculations were done for both mirror nuclei in the psdpn model space. Depending on the type of potential used, the calculated values of skin thickness are affected. The symmetry energy and the symmetry energy's slope at nuclear saturation density were also determined, and the ratio of the density to the saturation density of nuclear matter and the symmetry energy has a nearly linear correlation. The mirror energy displacement was calculated, and the findings corresponded well with the available experimental data for the binding energies of the studied mirror nuclei. The measured values of the symmetry energy coefficient for the pair of mirror nuclei agreed with the computed ones, and this coefficient's value rises exponentially as the difference in charge radius increases.

Article Details

How to Cite
1.
Study of the Symmetry Energy and the Nuclear Equation of State for 13O -13B and 13N-13C Mirror Nuclei. IJP [Internet]. 2023 Dec. 1 [cited 2024 Mar. 5];21(4):24-31. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1147
Section
Articles

How to Cite

1.
Study of the Symmetry Energy and the Nuclear Equation of State for 13O -13B and 13N-13C Mirror Nuclei. IJP [Internet]. 2023 Dec. 1 [cited 2024 Mar. 5];21(4):24-31. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1147

References

B.S. Hameed and B. K. Rejha, Baghdad Sci J, 19(6),1566 (2022).

T. A. Alwan and B. S. Hameed, Baghdad Sci J, 20(1), 235 (2023).

Raheem, S.K. Dakhil, Z.A. Hameed and B.S. Journal of Physics: Conference Series,

(1), 012023 (2021).

Tomoya Naito, Xavier Roca-Maza, Gianluca Colo, Haozhao Liang, Hiroyuki

Sagawa, Phys. Rev. C 106, L061306 (2022).

B. Alex Brown, Phy. Rev. Lett. 119, 122502 (2017).

Bao-An Li and Macon Magno, Phys.Rev. C 102, 045807 (2020).

B. A. Brown, K. Minamisono , J. Piekarewicz , H. Hergert, D. Garand, A. Klose, K.

König, J. D. Lantis,Y. Liu , B. Maaß, A. J. Miller, W. Nörtershäuser, S. V. Pineda,

R. C. Powel, D. M. Rossi, F. Sommer, C. Sumithrarachchi, A. Teigelhöfer, J.

Watkins, and R. Wirth, Phys. Rev.Res., 2, 022035(R) (2020).

Jun-Yao Xua, Zheng-Zheng Lib, Bao-Hua Suna, Yi-Fei Niub, , Xavier Roca-Mazac,

Hiroyuki Sagawad, and Isao Tanihataa, Phys. Lett. B, 833, 137333 (2022).

Lie-Wen Chen, Che Ming Ko, and Bao-An Li, Phys. Rev. Lett. 94, 032701 (2005).

P.B˛aczyk, J.Dobaczewski, M.Konieczka, W.Satuła, T.Nakatsukasa and K.Sato,

Phys. Lett.B, 778, 178 (2018).

Y. Utsuno and S. Chiba. Phys. Rev. C 83, 021301(R) (2011).

R. Meharchand, R. G. T. Zegers, B. A. Brown, Sam M. Austin, T. Baugher, D.

Bazin, J. Deaven, A. Gade, G. F. Grinyer, C. J. Guess, M. E. Howard, H. Iwasaki,

S. McDaniel, K. Meierbachtol, G. Perdikakis, J. Pereira, A. M. Prinke, A.

Ratkiewicz, A. Signoracci, S. Stroberg, L. Valdez, P. Voss, K. A. Walsh, D.

Weisshaar, and R. Winkler, Phys. Rev. Lett. 108, 122501 (2012).

BA Brown, and W Rae, Nucl Data Sheets,120, 115 (2014).

CY Tsang, BA Brown, FJ Fattoyev, WG Lynch, and MB Tsang, Phys. Rev. C.,

: 062801(R) (2019).

I Angeli, and KP Marinova, At Data Nucl Data Tables, 99, 69 (2013).

R Machleidt, Phys. Rev. C, 63(2), 024001 ( 2001).

X. Roca-Maza and N. Paar, Progress in Particle and Nuclear Physics, 101, 96

(2018).

B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz, Phys. Rev. Lett. 126,

(2021).

M.K.Gaidarov, I.Moumene, A.N.Antonov, D.N.Kadrev, P.Sarriguren, and E.Moya,

Nucl.Phys. A, 1004, 122061 (2020).

Similar Articles

You may also start an advanced similarity search for this article.