Study of the Symmetry Energy and the Nuclear Equation of State for 13O -13B and 13N-13C Mirror Nuclei
Main Article Content
Abstract
In parallel with the shell model using the harmonic oscillator's single-particle wave functions, the Hartree-Fock approximation was also used to calculate the neutron skin thickness, the mirror charge radii, and the differences in proton radii for 13O-13B and 13N-13C mirror nuclei. The calculations were done for both mirror nuclei in the psdpn model space. Depending on the type of potential used, the calculated values of skin thickness are affected. The symmetry energy and the symmetry energy's slope at nuclear saturation density were also determined, and the ratio of the density to the saturation density of nuclear matter and the symmetry energy has a nearly linear correlation. The mirror energy displacement was calculated, and the findings corresponded well with the available experimental data for the binding energies of the studied mirror nuclei. The measured values of the symmetry energy coefficient for the pair of mirror nuclei agreed with the computed ones, and this coefficient's value rises exponentially as the difference in charge radius increases.
Received: Jun.14, 2023
Revised: Sep. 12, 2023
Accepted: Sep. 28, 2023
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
B.S. Hameed and B. K. Rejha, Baghdad Sci J, 19(6),1566 (2022).
T. A. Alwan and B. S. Hameed, Baghdad Sci J, 20(1), 235 (2023).
Raheem, S.K. Dakhil, Z.A. Hameed and B.S. Journal of Physics: Conference Series,
(1), 012023 (2021).
Tomoya Naito, Xavier Roca-Maza, Gianluca Colo, Haozhao Liang, Hiroyuki
Sagawa, Phys. Rev. C 106, L061306 (2022).
B. Alex Brown, Phy. Rev. Lett. 119, 122502 (2017).
Bao-An Li and Macon Magno, Phys.Rev. C 102, 045807 (2020).
B. A. Brown, K. Minamisono , J. Piekarewicz , H. Hergert, D. Garand, A. Klose, K.
König, J. D. Lantis,Y. Liu , B. Maaß, A. J. Miller, W. Nörtershäuser, S. V. Pineda,
R. C. Powel, D. M. Rossi, F. Sommer, C. Sumithrarachchi, A. Teigelhöfer, J.
Watkins, and R. Wirth, Phys. Rev.Res., 2, 022035(R) (2020).
Jun-Yao Xua, Zheng-Zheng Lib, Bao-Hua Suna, Yi-Fei Niub, , Xavier Roca-Mazac,
Hiroyuki Sagawad, and Isao Tanihataa, Phys. Lett. B, 833, 137333 (2022).
Lie-Wen Chen, Che Ming Ko, and Bao-An Li, Phys. Rev. Lett. 94, 032701 (2005).
P.B˛aczyk, J.Dobaczewski, M.Konieczka, W.Satuła, T.Nakatsukasa and K.Sato,
Phys. Lett.B, 778, 178 (2018).
Y. Utsuno and S. Chiba. Phys. Rev. C 83, 021301(R) (2011).
R. Meharchand, R. G. T. Zegers, B. A. Brown, Sam M. Austin, T. Baugher, D.
Bazin, J. Deaven, A. Gade, G. F. Grinyer, C. J. Guess, M. E. Howard, H. Iwasaki,
S. McDaniel, K. Meierbachtol, G. Perdikakis, J. Pereira, A. M. Prinke, A.
Ratkiewicz, A. Signoracci, S. Stroberg, L. Valdez, P. Voss, K. A. Walsh, D.
Weisshaar, and R. Winkler, Phys. Rev. Lett. 108, 122501 (2012).
BA Brown, and W Rae, Nucl Data Sheets,120, 115 (2014).
CY Tsang, BA Brown, FJ Fattoyev, WG Lynch, and MB Tsang, Phys. Rev. C.,
: 062801(R) (2019).
I Angeli, and KP Marinova, At Data Nucl Data Tables, 99, 69 (2013).
R Machleidt, Phys. Rev. C, 63(2), 024001 ( 2001).
X. Roca-Maza and N. Paar, Progress in Particle and Nuclear Physics, 101, 96
(2018).
B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz, Phys. Rev. Lett. 126,
(2021).
M.K.Gaidarov, I.Moumene, A.N.Antonov, D.N.Kadrev, P.Sarriguren, and E.Moya,
Nucl.Phys. A, 1004, 122061 (2020).