Efficiency of Heterojunction Solar Cells Based on Optical Band Gap
Main Article Content
Abstract
Electric energy production by fuel burning produces dangerous pollutants. The photovoltaic solar cell is a suitable alternative. For thin film solar cells, efficiency improvement should be carried out through continued development of their characteristics. The homojunction solar cell has reached its optimum. In the present work, a relationship between optical band gap and solar cell efficiency of heterojunctions has been established. Suitable band gaps of a pair of heterojunctions are required to get maximum efficiency for an appropriate frequency of solar radiation. The efficiency of a couple of extrinsic semiconductors can be calculated theoretically. An optimum band gap of a pair of heterojunctions with the highest efficiency may be found by this process. The efficiency of a few heterojunctions has been calculated using reported data. The results show that efficiency is increased with optical band gaps, and type-I is more efficient than type-II heterojunctions. The work may help to improve the solar cell efficiency.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
References
C. Intergovernmental Panel on Climate, Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group Ii Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge, Cambridge University Press, 2023).
J. Lee and F. Zhao, Global Wind Report 2022.“Global Wind Energy Council,” 2022. 2022, GWEC – Global Wind Energy Council: UK, USA, Asia.
M. Muhibbullah, Q. T. Sadat, and U. Subramaniam, Energies 15, 6997 (2022). DOI: 10.3390/en15196997.
R. K. Karre, K. Srinivas, K. Mannan, B. Prashanth, and C. R. Prasad, AIP Conference Proceedings 2418 (1), 030048 (2022). DOI: 10.1063/5.0081709.
E. Serin, P. Andres, R. Martin, A. Shah, and A. Valero, C.f.E. Performance UK, (2023).
M. Muhibbullah, Q. T. Sadat, S. K. Rahman, A. C. Sutradhar, and M. E. Shaikh, 2020 IEEE Region 10 Symposium (TENSYMP) (Dhaka, Bangladesh 2020). p. 1034.
M. Muhibbullah, M. O. Hakim, and M. G. M. Choudhury, Thin Sol. Fil. 423, 103 (2003). DOI: 10.1016/S0040-6090(02)00970-7.
C. Dong, Y. Shi, Q. Li, H. Gu, D. Li, Y. Ye, and T. Li, Case Stud. Ther. Eng. 44, 102867 (2023). DOI: 10.1016/j.csite.2023.102867.
B. Zohuri, Small Modular Reactors as Renewable Energy Sources (NM, USA, Springer, 2019).
M. Muhibbullah and M. Ichimura, Transact. Mat. Res. Soci. Japan 36, 195 (2011). DOI: 10.14723/tmrsj.36.195.
M. Muhibbullah and M. Ichimura, Mat. Res. Bullet. 47, 1968 (2012). DOI: 10.1016/j.materresbull.2012.04.013.
A. G. Olabi and M. A. Abdelkareem, Renew. Sust. Ener. Rev. 158, 112111 (2022). DOI: 10.1016/j.rser.2022.112111.
P. Caprioglio, M. Stolterfoht, C. M. Wolff, T. Unold, B. Rech, S. Albrecht, and D. Neher, Adv. Energy Mater. 9, 1901631 (2019). DOI: 10.1002/aenm.201901631.
X.-X. Gao, Q.-Q. Ge, D.-J. Xue, J. Ding, J.-Y. Ma, Y.-X. Chen, B. Zhang, Y. Feng, L.-J. Wan, and J.-S. Hu, Nanoscale 8, 16881 (2016). DOI: 10.1039/C6NR05917A.
C. K. G. Kwok, H. Tangara, N. Masuko, R. Scheer, S. Ishizuka, M. Monirul Islam, and T. Sakurai, Sol. Ener. Mat. Sol. Cel. 269, 112767 (2024). DOI: 10.1016/j.solmat.2024.112767.
L. Shen, F. Meng, and Z. Liu, Sol. Ener. 97, 168 (2013). DOI: 10.1016/j.solener.2013.08.028.
M. B. Pramanik, M. A. Al Rakib, M. A. Siddik, and S. Bhuiyan, European J. Eng. Tech. Res. 9, 10 (2024).
DOI: 10.24018/ejeng.2024.9.1.3118.
A. Gaur, K. Khan, B. R. Bhagat, J. Sahariya, A. Soni, and A. Dashora, Sol. Ener. 215, 144 (2021).
DOI: 10.1016/j.solener.2020.12.041.
A. S. Brown, M. A. Green, and R. P. Corkish, Phys. E Low-dimen. Syst. Nanostruct. 14, 121 (2002).
DOI: 10.1016/S1386-9477(02)00375-2.
T. Zdanowicz, T. Rodziewicz, and M. Zabkowska-Waclawek, Sol Ener. Mat. Sol. Cel. 87, 757 (2005).
DOI: 10.1016/j.solmat.2004.07.049.
W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). DOI: 10.1063/1.1736034.
S. P. Bremner, R. Corkish, and C. B. Honsberg, IEEE Transact. Elect. Dev. 46, 1932 (1999). DOI: 10.1109/16.791981.
A. De Vos and H. Pauwels, Appl. Phys. 25, 119 (1981). DOI: 10.1007/BF00901283.
M. Muhibbullah, M. Golam Mowla Choudhury, and S. M. Mominuzzaman, Transact. Mat. Res. Soci. Japan 37, 405 (2012). DOI: 10.14723/tmrsj.37.405.
M. Muhibbullah and A. M. A. Haleem, Transact. Mat. Res. Soci. Japan 40, 247 (2015). DOI: 10.14723/tmrsj.40.247.
C. Hu, Modern Semiconductor Devices for Integrated Circuits (Noida, Pearson India Education Services, 2010).
C. Hu and R. M. White, Solar Cells: From Basics to Advanced Systems (New York, McGraw-Hill, 1983).
G. C. Enebe, K. Ukoba, and T. C. Jen, AIMS Energy 7, 527 (2019). DOI: 10.3934/energy.2019.4.527.
Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, J. Elect. Mat. 47, 1201 (2018).
DOI: 10.1007/s11664-017-5850-9.
L. A. Burton, T. J. Whittles, D. Hesp, W. M. Linhart, J. M. Skelton, B. Hou, R. F. Webster, G. O'Dowd, C. Reece, and D. J. J. O. M. C. A. Cherns, J.f Mat. Chem. A 4, 1312 (2016). DOI: 10.1039/C5TA08214E.
N. Kelaidis, S. Bousiadi, M. Zervos, A. Chroneos, and N. N. Lathiotakis, Sci. Rep. 10, 16828 (2020).
DOI: 10.1038/s41598-020-73703-y.
A. Green M, Prog. Photovoltaic Res. Applic. 8, 346 (2000). DOI: 10.1002/pip.1021.
S. Bhattacharya and S. John, Sci. Rep. 9, 12482 (2019). DOI: 10.1038/s41598-019-48981-w.
M. Meftah, A. Chevalier, C. Conscience, and S. Nevens, J. Spac. Weath. Spac. Clim. 6, A34 (2016).
DOI: 10.1051/swsc/2016027.
S. Rühle, Sol. Ener. 130, 139 (2016). DOI: 10.1016/j.solener.2016.02.015.
K. O. Hara, J. Phys. Chem. C 125, 24310 (2021). DOI: 10.1021/acs.jpcc.1c06338.