Study the Electronic and Spectroscopic Characteristics of p-n Heterojunction Hybrid (Sn10O16/C24O6) via Density Functional Theory (DFT)

Main Article Content

Shaima K. Abdulradha
https://orcid.org/0009-0005-4078-756X
Mohammed T. Hussein
https://orcid.org/0000-0002-6367-7807
Mudar Ahmed Abdulsattar
https://orcid.org/0000-0001-8234-6686

Abstract

The electronic characteristics, including the density of state and bond length, in addition to the spectroscopic properties such as IR spectrum and Raman scattering, as a function of the frequency of Sn10O16, C24O6, and hybrid junction (Sn10O16/C24O6) were studied. The methodology uses DFT for all electron levels with the hybrid function B3-LYP (Becke level, 3-parameters, Lee–Yang-Parr), with 6-311G (p,d)  basis set, and Stuttgart/Dresden (SDD) basis set, using Gaussian 09 theoretical calculations. The geometrical structures were calculated by Gaussian view 05 as a supplementary program. The band gap was calculated and compared to the measured values. The density of state of the hybrid junction (Sn10O16/C24O6) increased because of the increased number of degeneracy states. Theoretical values of bonds for C=C, C=O, and Sn-O are equal to 1.33, 1.20 and 2.27 Å respectively, these bonds values are in good agreement with experimental values of bond length of 1.34 for the C=C bond, 1.23 for the C=O bond, and 2.3 for the Sn-O bond. . The spectroscopic properties, such as IR spectra have shown a peak which is comparable to longitudinal modes of GO and tin dioxide SnO2 at  (1582 and 690) cm-1, respectively.

Article Details

How to Cite
1.
Study the Electronic and Spectroscopic Characteristics of p-n Heterojunction Hybrid (Sn10O16/C24O6) via Density Functional Theory (DFT). IJP [Internet]. 2023 Sep. 1 [cited 2024 Jun. 27];21(3):24-32. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1124
Section
Articles

How to Cite

1.
Study the Electronic and Spectroscopic Characteristics of p-n Heterojunction Hybrid (Sn10O16/C24O6) via Density Functional Theory (DFT). IJP [Internet]. 2023 Sep. 1 [cited 2024 Jun. 27];21(3):24-32. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1124

References

Z. Wang, Z. Jia, Q. Li, X. Zhang, W. Sun, J. Sun, B. Liu, and B. Ha, J. Coll. Inter. Sci. 537, 228 (2019).

X. Xu, J. Zeng, Y. Wu, Q. Wang, S. Wu, and H. Gu, Separations 9, 401 (2022).

F. El-Hossary, A. Ghitas, A. Abd El-Rahman, M. A. Shahat, and M. H. Fawey, Vacuum 188, 110158 (2021).

E. F. Joel and G. Lujanienė, Environments 9, 153 (2022).

S. Drewniak, Ł. Drewniak, and T. Pustelny, Sensors 22, 5316 (2022).

D.-T. Phan and G.-S. Chung, J. Phys. Chem. Sol. 74, 1509 (2013).

R. Hajian, K. Fung, P. P. Chou, S. Wang, S. Balderston, and K. Aran, Mater. Matt. 14, 1 (2019).

Y. Xiao, Y. X. Pang, Y. Yan, P. Qian, H. Zhao, S. Manickam, T. Wu, and C. H. Pang, Advan. Sci. 10, 2205292 (2023).

S. Wu, X. Wang, Z. Li, S. Zhang, and F. Xing, Micromachines 11, 1059 (2020).

A. M. Pandele, M. Oprea, A. A. Dutu, F. Miculescu, and S. I. Voicu, Polymers 14, 148 (2021).

J. E. House and K. A. House, Descriptive Inorganic Chemistry. 2nd Ed. (Burlington, USA, Elesevier, 2015).

O. E. Oladigbo, O. Adedokun, and Y. K. Sanusi, Int. J. Eng. Sci. Appl. 2, 88 (2018).

A. Marikuts, M. Rumyantseva, and A. Gaskov, Proced. Eng. 168, 1082 (2016).

H. K. Saglam, M. Masat, and M. Ertugrul, Int. J. Innov. Res. Rev. 5, 69 (2021).

S. Baco, A. Chik, and F. M. Yassin, J. Sci. Tech. 4, 61 (2012).

S. Ebrahimiasl, W. M. Z. W. Yunus, A. Kassim, and Z. Zainal, Sensors 11, 9207 (2011).

S. Mohana Priya, A. Geetha, and K. Ramamurthi, J. Sol-Gel Sci. Tech. 78, 365 (2016).

G. K. Dalapati, H. Sharma, A. Guchhait, N. Chakrabarty, P. Bamola, Q. Liu, G. Saianand, A. M. S. Krishna, S. Mukhopadhyay, and A. Dey, J. Mat. Chem. A 9, 16621 (2021).

O. Filonenko, A. Grebenyuk, and V. Lobanov, Chem., Phys. Tech. Surf. 12, 283 (2021).

S. M. Yakout, Opt. Mat. 116, 111077 (2021).

T. Kim, D. Lee, J. Lee, D. Choo, M. Jung, and Y. Yoon, J. Appl. Phys. 90, 175 (2001).

P. T. Hernández, S. Hailes, and I. Parkin, Sens. Actuat. B: Chem. 242, 1281 (2017).

S. Mala, H. Lalithamba, N. Gowda, K. Manoja, R. Pavankumar, and T. Kishore, in International Conference on Smart Systems for applications in Electrical Sciences, IEEE, 2023, p. 1.

Q. Zhang, Q. Zhou, Z. Lu, Z. Wei, L. Xu, and Y. Gui, Front. Chem. 6, 364 (2018).

M. A. Abdulsattar, D. A. Nassrullah, and Z. T. Abdulhamied, J. Advan. Pharm. Edu. Res. 9, 119 (2019).

S. Das, D.-Y. Kim, C.-M. Choi, and Y. Hahn, J. Crys. Gro. 314, 171 (2011).

M. A. Abdulsattar, S. S. Batros, and A. J. Addie, Superlatt. Microstruc. 100, 342 (2016).

M. A. Hadi and M. T. Hussein, Iraqi J. Sci. 64, 157 (2023).

N. F. Jafer and M. T. Hussein, Int. J. Nanosci. 21, 2250006 (2022).

F. Hasan and M. Hussein, Mat. Today: Proce. 42, 2638 (2021).

M. Hussein, T. Fayad, and M. Abdulsattar, Chalcog. Lett. 16, 557 (2019).

E. Zins, M. Guinet, D. Rodriguez, and S. Payan, J. Quan. Spect. Rad. Tran. 283, 108141 (2022).

M. A. Abdulsattar, Karbala Int. J. Mod. Sci. 6, 205 (2020).

N. Kerru, L. Gummidi, S. V. Bhaskaruni, S. N. Maddila, P. Singh, and S. B. Jonnalagadda, Sci. Rep. 9, 19280 (2019).

M. A. Matin, M. M. Islam, T. Bredow, and M. A. Aziz, Advan. Chem. Eng. Sci. 7, 137 (2017).

M. T. Hussein and H. A. Thjeel, in Journal of Physics: Conference Series, IOP Publishing, 2019, p. 012015.

P. Pal, A. Yadav, P. S. Chauhan, P. K. Parida, and A. Gupta, Sens. Int. 2, 100072 (2021).

W. Zhang, X. Xiao, X. Zeng, Y. Li, L. Zheng, and C. Wan, J. All. Comp. 685, 774 (2016).

A. H. Taha, American J. Conden. Mat. Phys. 4, 63 (2014).

Abid, P. Sehrawat, S. Islam, P. Mishra, and S. Ahmad, Sci. Rep. 8, 3537 (2018).

E. Mattson, J. Johns, K. Pande, R. Bosch, S. Cui, M. Gajdardziska-Josifovska, M. Weinert, J. Chen, M. Hersam, and C. Hirschmugl, J. Phys. Chem. Lett. 5, 212 (2014).

H. Liang, AIP Advan. 4, 107131 (2014).

J. D. Roberts and M. C. Caserio, Basic Principles of Organic Chemistry. (New York; Amsterdam, WA Benjamin, Inc., 1977).

Y. Salem, C. Abdelkader, and H. Fodil, Chinese J. Struct. Chem. 32, 1544 (2013).

T. Sivaranajani, T. Jayavarthanan, S. Suresh, C. Biju, A. Jayanthi, L. Sangeetha, C. Saveetha, A. a. P. Frit, and M. Muruganandam, Chem. Phys. Imp. 6, 100200 (2023).

Y. Chen, H. Qin, Y. Cao, H. Zhang, and J. Hu, Sensors 18, 3425 (2018).

Y. Shen, S. Yang, P. Zhou, Q. Sun, P. Wang, L. Wan, J. Li, L. Chen, X. Wang, and S. Ding, Carbon 62, 157 (2013).

S. Sambasivam and I. M. Obaidat, Mat. Today: Proc. 28, 587 (2020).

J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, and P.-H. Tan, Chem. Soci. Rev. 47, 1822 (2018).

H. Alghamdi, O. Z. Farinre, M. L. Kelley, A. J. Biacchi, D. Saha, T. Adel, K. Siebein, A. R. H. Walker, C. A. Hacker, and A. F. Rigosi, Data 8, 37 (2023).

Similar Articles

You may also start an advanced similarity search for this article.