Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films.

Main Article Content

Yahya R. Hathal
https://orcid.org/0000-0001-9343-2432
Isam M. Ibrahim
Mohammed K. Khalaf
https://orcid.org/0000-0001-5688-6304
Ehsan H. Sabbar
Musaria K. Mahmood
https://orcid.org/0000-0002-6086-9483

Abstract

This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV as the sputtering power is increased from 25 to 75 W. AFM images illustrate a progressive increase in particle size ranging from (41.86) to (45.56) nm, with varying sputtering power between 25 and 75 W. Additionally, EDS analysis validates the rise in Nb content, increasing from 12.2 at. % to 20.1 at. %, corresponding to the increase in sputtering power. Hall effect measurements show that all films exhibit n-type charge carriers, and increasing sputtering power leads to decreased carrier concentration and enhanced mobility. The gas sensor's sensitivity, response, and recovery time were evaluated at various operating temperatures. The NO2 sensor exhibited an optimal sensitivity of 28.6% at 200 °C when the sputtering power was set to 50 W.

Article Details

How to Cite
1.
R. Hathal Y, M. Ibrahim I, K. Khalaf M, H. Sabbar E, K. Mahmood M. Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films. IJP [Internet]. 2023 Sep. 1 [cited 2024 Dec. 5];21(3):41-54. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1153
Section
Articles

References

C. Nico, T. Monteiro, and M. P. Graça, Prog. Mat. Sci. 80, 1 (2016).

G. H. M. Gomes and N. D. Mohallem, Mat. Lett. 318, 132136 (2022).

K. Islam, R. Sultana, B. Satpati, and S. Chakraborty, Vacuum 195, 110675 (2022).

J. Lin, S. Zhao, T. G. Tranter, Z. Zhang, F. Peng, D. Brett, R. Jervis, and P. R. Shearing, Electrochim. Act. 443, 141983 (2023).

W. Elshirbeeny, M. Harthy, and A. Alshahrie, Int. J. Opt. Photonic. Eng. 4, 019 (2019).

L. Yang, Y. Wei, Y. Song, Y. Peng, Y. Yang, and Z. Huang, Mat. Des. 193, 108808 (2020).

J. M. Hwang, N. Y. Kim, S. Shin, J. H. Lee, J. Y. Ryu, T. Eom, B. K. Park, C. G. Kim, and T.-M. Chung, Polyhedron 200, 115134 (2021).

A. C. S. Valentim, E. O. Da Silva, P. S. R. C. Da Silva, D. S. Garcia, and M. I. B. Tavares, Poly. Tes. 70, 111 (2018).

Z. Liu, W. Dong, J. Wang, C. Dong, Y. Lin, I.-W. Chen, and F. Huang, Iscience 23, (2020).

A. Golobič, A. Meden, M. Spreitzer, and S. Škapin, J. Eur. Ceram. Soci. 41, 7035 (2021).

R. Lan, J. T. Irvine, and S. Tao, Int. J. Hyd. Ener. 37, 1482 (2012).

F. Schüth, R. Palkovits, R. Schlögl, and D. S. Su, Ener. Envir. Sci. Tech. 5, 6278 (2012).

S. W. Lee, W. Lee, Y. Hong, G. Lee, and D. S. Yoon, Sen. Actuat. B: Chem. 255, 1788 (2018).

T. Takeuchi, H. Takahashi, K. Saji, H. Kondo, and I. Igarashi. 1983, SAE Technical Paper: Tokyo, Japan. pp. 627

L. Chambon, J. Germain, A. Pauly, V. Demarne, and A. Grisel, Sens. Actuat. B: Chem. 60, 138 (1999).

A. Eftekhari and P. Corrochano, Sust. Ener. Fuel. 1, 1246 (2020).

O. A. Jassim, M. M. Mutter, and S. Khalil, in Materials Science Forum, Trans Tech Publ, 2022, p. 21.

W. Ai and S. Xiong, Opt. Laser Tech. 150, 107850 (2022).

X. Lv, Y. Wei, G. Liu, Z. Huang, and Y. Yang, Ceram. Int. 49, 10395 (2023).

S. Pat, Ö. Çelik, A. Odabaş, and Ş. Korkmaz, Optik 258, 168928 (2022).

R. Siripuram, P. Rao, and S. Sripada, Physics

Chem. Glasses-Eur. J. Glass Sci. Tech. Part B 63, 65 (2022).

I. M. Ali and I. M. Ibrahim, Iraqi J. Phys. 19, 20 (2021).

M. Z. Iqbal, M. Alzaid, U. Abbasi, S. Alam, R. Ali, A. M. Afzal, and S. Aftab, Int. J. Ener. Res. 46, 7334 (2022).

A. M. Koshy, A. Sudha, S. K. Yadav, and P. Swaminathan, Phys. B: Conden. Matt. 650, 414452 (2023).

S. B. Q. Tran, F. Y. Leong, R. Hariharaputran, D. Wenjun, P.-Y. Lai, and D. V. Le, Vacuum 213, 112097 (2023).

S. Abd Al Kareem and W. Yaseen, in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, p. 012054.

M. A. Butt, C. Tyszkiewicz, P. Karasiński, M. Zięba, A. Kaźmierczak, M. Zdończyk, Ł. Duda, M. Guzik, J. Olszewski, and T. Martynkien, Materials 15, 4591 (2022).

F. Chen, Y. Zhou, Y. Zhu, R. Zhu, P. Guan, J. Fan, L. Zhou, N. Valanoor, F. Von Wegner, and E. Saribatir, J. Mat. Chem. C 9, 8372 (2021).

K. Yahya, Iraqi J. Phys. 15, 202 (2017).

F. Challali, D. Mendil, T. Touam, T. Chauveau, V. Bockelée, A. G. Sanchez, A. Chelouche, and M.-P. Besland, Mat. Sci. Semicond. Proces. 118, 105217 (2020).

M. Rudolph, N. Brenning, M. A. Raadu, H. Hajihoseini, J. T. Gudmundsson, A. Anders, and D. Lundin, Plas. Sour. Sci. Tech. 29, 05LT01 (2020).

E. I. García-López, F. R. Pomilla, B. Megna, M. L. Testa, L. F. Liotta, and G. Marcì, Nanomaterials 11, 1821 (2021).

M. Imran, R. Ahmad, N. Afzal, and M. Rafique, Vacuum 165, 72 (2019).

A. M. Al-Baradi, M. El-Nahass, A. Hassanien, A. Atta, M. S. Alqahtani, and A. O. Aldawsari, Optik 168, 853 (2018).

A. F. Rauuf and K. A. Aadim, Iraqi J. Sci. 64, 2877 (2023).

K.-N. Chen, C.-M. Hsu, J. Liu, Y.-C. Liou, and C.-F. Yang, Micromachines 7, 151 (2016).

E. Davis and N. Mott, Philosoph. Mag. 22, 0903 (1970).

H. Hou, Z. Jun, A. Reuning, A. Schaper, J. Wendorff, and A. Greiner, Macromolecules 35, 2429 (2002).

G. Ma, Y. Dongzhi, and N. Jun, Poly. Advan. Tech. 20, 147 (2009).

S. Xu and Z. L. Wang, Nano Res. 4, 1013 (2011).

R. A. Rani, A. S. Zoolfakar, A. P. O'mullane, M. W. Austin, and K. Kalantar-Zadeh, J. Mat. Chem. A 2, 15683 (2014).

Ö. D. Coşkun, S. Demirel, and G. Atak, J. All. Comp. 648, 994 (2015).

N. Usha, R. Sivakumar, C. Sanjeeviraja, and M. Arivanandhan, Optik-Int. J. Light Elec. Opt. 126, 1945 (2015).

A. Atta, A. Hassanien, M. El-Nahass, A. A. Shaltout, Y. A. Al-Talhi, and A. M. Aljoudi, Opt. Quan. Elec. 51, 1 (2019).

E. T. Salim, J. A. Saimon, M. K. Abood, and M. A. Fakhri, Mat. Res. Expres. 6, 126459 (2020).

A. Ibraheam, J. M. Rzaij, M. A. Fakhri, and A. Abdulwahhab, Mat. Res. Expres. 6, 055916 (2019).

L. A. Patil, A. R. Bari, M. D. Shinde, V. V. Deo, and D. P. Amalnerkar, IEEE Sen. J. 11, 939 (2010).

L. Fan, X. Yang, and H. Sun, J. Mat. Chem. C 11, 10163 (2023).

A. Staerz, U. Weimar, and N. Barsan, Sen. Actuat. B: Chem. 358, 131531 (2022).

J. Hsieh, C. Liu, and Y. Ju, Thin Sol. Fil. 322, 98 (1998).

N. K. Abbas, I. M. Ibrahim, and M. A. Saleh, Silicon 10, 1345 (2018).

S. Pagidi, K. S. Pasupuleti, M. Reddeppa, S. Ahn, Y. Kim, J.-H. Kim, M.-D. Kim, S. H. Lee, and M. Y. Jeon, Sen. Actuat. B: Chem. 370, 132482 (2022).

M. K. Khalaf, B. T. Chiad, A. F. Ahmed, and F. a. H. Mutlak, Int. J. Appl. Innov. Eng. Manag. 2, 178 (2013).

Similar Articles

You may also start an advanced similarity search for this article.