Study of the Optical and Structural Properties of Metal-Doped Titanium Dioxide Electrode Prepared by the Sol-Gel Method for Dye-Sensitized Solar Cells

Main Article Content

Hadeel D. Hamadalla
Falah H. Ali
https://orcid.org/0000-0002-7855-077X

Abstract

This study presents a strategy to increase the efficiency of dye-sensitized solar cells (DSSCs) by doping titanium dioxide (TiO2) with different magnesium (Mn) concentrations (1, 3, 5, 7, and 9%) generated by the sol-gel process and effectively employed as a photo-anode (the working electrode) for DSSCs. The Doctor Blade method coated the indium-doped tin oxide (ITO) glass with a thin film layer. X-ray diffraction (XRD) was used to evaluate the characteristics of undoped and manganese-doped TiO2, and the results demonstrate that all of the thin films are anatase. The samples were examined using XRD to assess grain size before and after Mn doping. The spectrum of UV-Vis absorption changes; accordingly, as doping increases, the energy gap decreases. The smallest energy gap's value (2.4 eV) is 7% manganese doping. AFM pictures show the average roughness and root mean square of the weight percentage of films doped with 5%. Field effect scanning electron microscope (FE-SEM) studies show that the particle size of thin films gets smaller as more Mn is added, which happens at least as much as 7% Mn doping. The optimal thickness for TiO2 paste over conductive glass is 15 μm, and the cell's power conversion efficiency increased to 0.604074% with an Imax of 4.965 mA, a Vmax of 0.488 V, and a fill factor (FF) of 68.45954%.

Article Details

Section

Articles

How to Cite

1.
Hamadalla HD, Ali FH. Study of the Optical and Structural Properties of Metal-Doped Titanium Dioxide Electrode Prepared by the Sol-Gel Method for Dye-Sensitized Solar Cells. IJP [Internet]. 2024 Jun. 1 [cited 2025 Jan. 21];22(2):57-68. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1167

References

K. Sharma, V. Sharma, and S. S. Sharma, Nanosc. Res. Lett. 13, 381 (2018).

F. H. Ali, Iraqi J. Phys. 16, 28 (2018).

A. Bartkowiak, O. Korolevych, G. L. Chiarello, M. Makowska-Janusik, and M. Zalas, Appl. Surf. Sci. 597, 153607 (2022).

T. Stergiopoulos, E. Rozi, C.-S. Karagianni, and P. Falaras, Nanosc. Res. Lett. 6, 307 (2011).

C.-P. Lee, C.-T. Li, and K.-C. Ho, Mater. Today 20, 267 (2017).

F. J. Al-Maliki and M. A. Al-Rubaiy, Opt. Quan. Elect. 54, 377 (2022).

M. A. Nima and F. J. Kadhim, Iraqi J. Appl. Phys. 17, 9 (2021).

M. M. Mohsin and F. H. Ali, Chem. Methodol. 7, 335 (2023).

A. H. Hasan and F. Hasan, Indian J. Nat. Sci. 9, 15242 (2018).

A. M. Alqudsi and K. A. Saleh, Baghdad Sci. J. 21, 1243 (2024).

K. Mangersnes, Ph.D Thesis, University of Oslo, 2011.

N. E. Martínez and P. Cart, Ph.D Thesis, University of Bretagne Loire, 2012.

A. S. Al-Ezzi and M. N. M. Ansari, 5 5, 67 (2022).

W. A. Al-Taa'y and B. A. Hasan, Iraqi J. Phys. 19, 22 (2021).

R. Su, R. Bechstein, J. Kibsgaard, R. T. Vang, and F. Besenbacher, J. Mater. Chem. 22, 23755 (2012).

R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature 388, 431 (1997).

B. Pradhan, S. K. Batabyal, and A. J. Pal, Sol. En. Mater. Sol. Cell. 91, 769 (2007).

F. Arjmand and Z. R. Ranjbar, Heliyon 8, e11692 (2022).

J. Halme, MS.c Thesis, Helsinki University of Technology, 2002.

A. A. Salman, M.Sc. Thesis, Al-Nahrain University, 2012.

A. A. Al-Khafaji, D. B. Alwan, F. H. Ali, and W. Twej, Envir. Sci. Indian J. 12, 217 (2016).

S. N. R. Inturi, T. Boningari, M. Suidan, and P. G. Smirniotis, Appl. Cat. B Envir. 144, 333 (2014).

S. Sharma, S. Chaudhary, S. C. Kashyap, and S. K. Sharma, J. Appl. Phys. 109, 083905 (2011).

M. M. Abbas and M. Rasheed, Iraqi J. Phys. 19, 1 (2021).

F. H. Ali, Journal of Physics: Conference Series (IOP Publishing, 2021). p. 012076.

N. M. Jabbar and M. M.-A. Hussein, Iraqi J. Phys. 20, 109 (2022).

Similar Articles

You may also start an advanced similarity search for this article.