Synthesis of PPy-MnO2 Nanocomposite for Utilization in Supercapacitor Applications

Main Article Content

Firas J. Hameed
https://orcid.org/0009-0009-1141-9396
Isam M. Ibrahim
https://orcid.org/0000-0001-5378-4097

Abstract

Polypyrrole (PPy) nanocomposites were prepared using chemical oxidation and were combined with manganese oxide (MnO2) nanoparticles. The PPY-MnO2 nanocomposite was synthesized by integrating PPy nanofibers with varying volume ratio percentages of MnO2 dopant (10, 30, and 50% vol. ratio). The structural features of the PPy and PPy-MnO2 nanocomposite were investigated using X-ray diffraction (XRD).  Fourier transfor infrared (FTIR) spectroscopy was used to demonstrate the molecular structures of primary materials and the final product of PPy, MnO2, and PPy- MnO2 nanocomposites. Field Emission Scanning Electron Microscopy (FESEM) showed that the morphology of PPy consisted of a network of nanofibers. Increasing the volume ratios of manganese oxide added to the PPY nanofiber led to the increase of manganese oxide nanoparticles on the surface of the PPY nanofiber network. This resulted in a noticeable alteration in the structure of the nanocomposite. It has been observed that the nanocomposites demonstrate a significant level of pseudocapacitive activity.  The highest capacitance of 236 F/g was observed when pure PPy was doped with 30% MnO2 compared to 125 F/g of the pure PPy. 

Article Details

Section

Articles

How to Cite

1.
Hameed FJ, Ibrahim IM. Synthesis of PPy-MnO2 Nanocomposite for Utilization in Supercapacitor Applications. IJP [Internet]. 2024 Sep. 1 [cited 2025 Jan. 10];22(3):67-7. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1265

References

J.-G. Wang, F. Kang, and B. Wei, Prog. Mat. Sci. 74, 51 (2015). DOI: 10.1016/j.pmatsci.2015.04.003.

P.-Y. Tang, L.-J. Han, A. Genç, Y.-M. He, X. Zhang, L. Zhang, J. R. Galán-Mascarós, J. R. Morante, and J. Arbiol, Nano Ener. 22, 189 (2016). DOI: 10.1016/j.nanoen.2016.02.019.

J. S. Lee, D. H. Shin, and J. Jang, Ener. Envir. Sci. 8, 3030 (2015). DOI: 10.1039/C5EE02076J.

Y. Zhao, J. Misch, and C.-A. Wang, J. Mat. Sci. Mat. Elect. 27, 5533 (2016). DOI: 10.1007/s10854-016-4457-x.

J. K. Gan, Y. S. Lim, N. M. Huang, and H. N. Lim, Appl. Surf. Sci. 357, 479 (2015). DOI: 10.1016/j.apsusc.2015.09.071.

F. Shi, L. Li, X.-L. Wang, C.-D. Gu, and J.-P. Tu, RSC Advan. 4, 41910 (2014). DOI: 10.1039/C4RA06136E.

H. Farrokhi, O. Khani, F. Nemati, and M. Jazirehpour, Synth. Metals 215, 142 (2016). DOI: 10.1016/j.synthmet.2016.02.016.

L. Jiang, X. Lu, J. Xu, Y. Chen, G. Wan, and Y. Ding, J. Mat. Sci. Mat. Elect. 26, 747 (2015). DOI: 10.1007/s10854-014-2459-0.

M. A. Salman and S. M. Hassan, Iraqi J. Phys. 19, 33 (2021). DOI: 10.30723/ijp.19.48.33-43

N. J. Abdullah, S. M. Hasan, and A. F. Essa, AIP Conference Proceedings 2372, 130016 (2021). DOI: 10.1063/5.0065394.

H. M. Hawy and I. M. Ali, Optik 262, 169263 (2022). DOI: 10.1016/j.ijleo.2022.169263.

N. J. Abdullah, A. F. Essa, and S. M. Hasan, Iraqi J. Sci. 62, 138 (2021). DOI: 10.24996/ijs.2021.62.1.13.

P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, A. Cao, and D. Wu, ACS Appl. Mat. Inter. 6, 5228 (2014). DOI: 10.1021/am500579c.

F. Liang, Z. Liu, and Y. Liu, J. Mat. Sci. Mat. Elect. 28, 10603 (2017). DOI: 10.1007/s10854-017-6835-4.

J. Han, L. Li, P. Fang, and R. Guo, J. Phys. Chem. C 116, 15900 (2012). DOI: 10.1021/jp303324x.

Y. H. Park, K. W. Kim, and W. H. Jo, Polym. Adv. Technol. 13, 670 (2002). DOI: 10.1002/pat.331.

R. K. Sharma, A. C. Rastogi, and S. B. Desu, Electrochim. Acta 53, 7690 (2008). DOI: 10.1016/j.electacta.2008.04.028.

X. Yang and L. Li, Synth. Met. 160, 1365 (2010). DOI: 10.1016/j.synthmet.2010.04.015.

B. T. Raut, M. A. Chougule, A. A. Ghanwat, R. C. Pawar, C. S. Lee, and V. B. Patil, J. Mat. Sci. Mat. Elect. 23, 2104 (2012). DOI: 10.1007/s10854-012-0708-7.

R. W. G. Wyckoff, Crystal Structures (New York, Interscience Publishers, 1963).

F. Ruhemann, Physik. Ber 16, 2337 (1935).

J. Li, T. Que, and J. Huang, Mat. Res. Bullet. 48, 747 (2013). DOI: 10.1016/j.materresbull.2012.11.014.

Y. Song, M. Shang, J. Li, and Y. Su, Chem. Eng. J. 405, 127059 (2021). DOI: 10.1016/j.cej.2020.127059.

H. Khan, K. Malook, and M. Shah, J. Mat. Sci. Mat. Elect. 29, 9090 (2018). DOI: 10.1007/s10854-018-8936-0.

Y. Chen, X. Zhang, C. Xu, and H. Xu, Electrochim. Acta 309, 424 (2019). DOI: 10.1016/j.electacta.2019.04.072.

A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, K. Zaghib, and C. M. Julien, J. Pow. Sour. 240, 267 (2013). DOI: 10.1016/j.jpowsour.2013.04.013.

W. Zhao, J. Peng, W. Wang, B. Jin, T. Chen, S. Liu, Q. Zhao, and W. Huang, Nano. Micro. Small 15, 1901351 (2019). DOI: 10.1002/smll.201901351.

Z. Yang, J. Ma, B. Bai, A. Qiu, D. Losic, D. Shi, and M. Chen, Electrochim. Acta 322, 134769 (2019). DOI: 10.1016/j.electacta.2019.134769.

R. Moreno Araújo Pinheiro Lima and H. P. De Oliveira, J. Ener. Stor. 28, 101284 (2020). DOI: 10.1016/j.est.2020.101284.

W. He, G. Zhao, P. Sun, P. Hou, L. Zhu, T. Wang, L. Li, X. Xu, and T. Zhai, Nano Ener. 56, 207 (2019). DOI: 10.1016/j.nanoen.2018.11.048.

X. Liao, C. Pan, Y. Pan, and C. Yin, J. Alloy. Comp. 888, 161619 (2021). DOI: 10.1016/j.jallcom.2021.161619.

N. Sheng, S. Chen, J. Yao, F. Guan, M. Zhang, B. Wang, Z. Wu, P. Ji, and H. Wang, Chem. Eng. J. 368, 1022 (2019). DOI: 10.1016/j.cej.2019.02.173.

A. P. Tiwari, S.-H. Chae, G. P. Ojha, B. Dahal, T. Mukhiya, M. Lee, K. Chhetri, T. Kim, and H.-Y. Kim, J. Coll. Inter. Sci. 553, 622 (2019). DOI: 10.1016/j.jcis.2019.06.070.

K. D. Kumar, T. Ramachandran, Y. A. Kumar, A. a. A. Mohammed, and M. Kang, J. Phys. Chem. Sol. 185, 111735 (2024). DOI: 10.1016/j.jpcs.2023.111735.

B. Dahal, T. Mukhiya, G. P. Ojha, A. Muthurasu, S.-H. Chae, T. Kim, D. Kang, and H. Y. Kim, Electrochim. Acta 301, 209 (2019). DOI: 10.1016/j.electacta.2019.01.171.

S. Ghosh, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications (Kolkata, India, John Wiley & Sons, 2021).

W. Xu, L. Zhang, K. Zhao, X. Sun, and Q. Wu, Electrochim. Acta 360, 137008 (2020). DOI: 10.1016/j.electacta.2020.137008.

V. Khanna, P. Sharma, and P. Mahajan, eds. Innovations and Applications of Hybrid Nanomaterials. 2024, IGI Global: Hershey, PA, USA. 1.

R. Devi, V. Kumar, S. Kumar, M. Bulla, S. Sharma, and A. Sharma, Appl. Sci. 13, 7907 (2023). DOI: 10.3390/app13137907.

S. Zhang, C. Lin, J. Ye, D. Zhao, Y. Chen, J.-M. Zhang, J. Tao, J. Li, Y. Lin, S. F. L. Mertens, O. V. Kolosov, and Z. Huang, Ceram. Int. 49, 22160 (2023). DOI: 10.1016/j.ceramint.2023.04.043.

M. Ates and Y. Yuruk, Ionics 27, 2659 (2021). DOI:10.1007/s11581-021-04007-y.

F. J. Hameed and I. M. Ibrahim, Iraqi J. Sci. 62, 1503 (2021). DOI: 10.24996/ijs.2021.62.5.14.

Similar Articles

You may also start an advanced similarity search for this article.