Green Synthesis of CuO Nanoparticles Mediated Rhazya Stricta Plant Leaves Extract Characterization and Evaluation of their Antibacterial and Anticancer Activity (in vitro Study)

Main Article Content

Abeer M. Muslim
https://orcid.org/0009-0006-2337-5149
Iqbal S. Naji

Abstract

In this study, a straightforward, expeditious, and environmentally friendly approach to synthesize copper oxide nanoparticles (CuONPs) utilizing an aqueous extract of Rhazya Stricta (R. stricta) leaves was employed. The CuONPs underwent various analytical techniques for characterization, including X-ray diffractometer (XRD), field emission scan electron microscope (FESEM), energy dispersive X-ray (EDX) analyses, UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and zeta potential. The XRD analysis authenticated the monoclinic crystal nature, revealing an average crystallite size of 15.6 nm. FESEM images depicted semi-spherical and cubic shapes, with particle sizes ranging from 56.64 to 86.95 nm. The formation of CuONPs was initially confirmed by the observable change in colour, attributed to the excitation of surface Plasmon resonance at 280 nm in the UV-Vis spectra. FTIR analysis affirmed the presence of functional groups in the R. Stricta leaves extract, serving as both reducing and stabilizing agents, facilitating the formation of CuONPs. Zeta potential measurements indicated substantial stability with a value of 46.6 mV. The biosynthesized CuONPs were further evaluated for their antibacterial properties against Klebsiella Pneumoniae (K. pneumoniae) and Staphylococcus aureus (S. aureus), yielding inhibition zones of 21 mm and 30 mm, respectively. Additionally, the cytotoxicity assessment of CuONPs against A549 cell lines revealed higher cytotoxicity of 81.47 ± 1.517 at a CuONP concentration of 100 μg/ml. This work is the first attempt at R. stricta-facilitated synthesis of CuONPs as antibacterial and anticancer agents. It can subsequently be exploited as a potential candidate for these agents and might be utilized further in vivo studies.

Article Details

How to Cite
1.
Green Synthesis of CuO Nanoparticles Mediated Rhazya Stricta Plant Leaves Extract Characterization and Evaluation of their Antibacterial and Anticancer Activity (in vitro Study). IJP [Internet]. 2024 Sep. 1 [cited 2024 Sep. 1];22(3):93-105. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1259
Section
Articles

How to Cite

1.
Green Synthesis of CuO Nanoparticles Mediated Rhazya Stricta Plant Leaves Extract Characterization and Evaluation of their Antibacterial and Anticancer Activity (in vitro Study). IJP [Internet]. 2024 Sep. 1 [cited 2024 Sep. 1];22(3):93-105. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1259

References

Ali, H. H., & Noori, F. T. M., Green Synthesis and Characterization of Silver NPs for Biological Applications. Iraqi Journal of Applied Physics, (2021). 19(3A).

Al-Abodi, E. E., A Review Article: Green Synthesis by using Different Plants to preparation Oxide Nanoparticles, Ibn AL-Haitham Journal For Pure and Applied Sciences, (2023). 36(1), pp. 246-259.‏

Rane, A. V., Kanny, K., Abitha, V. K., & Thomas, S., Methods for synthesis of nanoparticles and fabrication of nanocomposites. In Synthesis of inorganic nanomaterials, (2018). pp. 121-139, Woodhead publishing.‏

Ishak, N. M., Kamarudin, S. K., & Timmiati, S. N., Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Materials Research Express, (2011). 6(11), 112004.‏

Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y., Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, (2010). 6(2), pp. 257-262.

Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P., Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, (2011). 13, pp. 2981-2988.

Hudlikar, M., Joglekar, S., Dhaygude, M., & Kodam, K., Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. Journal of Nanoparticle Research, (2012). 14, pp. 1-6.

Kasivelu, G., Basha, S. K., Kumar, V. G., & Ganesan, S., Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, (2008). 43(15), pp. 5115-5122.

Lengke, M. F., Fleet, M. E., & Southam, G., Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir, (2007). 23(5), pp. 2694-2699.

Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M., Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and bioengineering, (2002). 78(5), pp. 583-588.

Rautaray, D., Ahmad, A., & Sastry, M., Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete. Journal of the American Chemical Society, (2003). 125(48), pp. 14656-14657.

Anshup, Venkataraman, J. S., Subramaniam, C., Kumar, R. R., Priya, S., Kumar, T. S. & Pradeep, T., Growth of gold nanoparticles in human cells. Langmuir, (2005). 21(25), pp. 11562-11567.

S. Honary, H. Barabadi, E. Gharaei-Fathabad, and F. Naghibi, Green Synthesis Of Copper Oxide Nanoparticles Using Penicillium Aurantiogriseum, Penicillium Citrinum And

Penicillium Waksmanii, Dig. J. Nanomat. Biostruct. (2012). 7, pp. 999–1005.

S. Sathiyavimal, S. Vasantharaj, D. Bharathi, M. Saravanan, E. Manikandan, S. S. Kumar, and A. Pugazhendhi, J. Photochem. Photobiol. B. (2018). 188, pp. 126–134

Gebremedhn, K., Kahsay, M. H., & Aklilu, M., Green synthesis of CuO nanoparticles using leaf extract of Catha edulis and its antibacterial activity. Journal of Pharmacy and Pharmacology, (2019). 7(6), pp. 327-342.‏

Siddiqui, V. U., Ansari, A., Chauhan, R., & Siddiqi, W. A., Green synthesis of copper oxide (CuO) nanoparticles by Punica granatum peel extract. Materials Today: Proceedings, (2021). 36, pp. 751-755.‏

Venkatramanan, A., Ilangovan, A., Thangarajan, P., Saravanan, A., & Mani, B., Green synthesis of copper oxide nanoparticles (CuO NPs) from aqueous extract of seeds of Eletteria cardamomum and its antimicrobial activity against pathogens. Current Biotechnology, (2020). 9(4), pp. 304-311.‏

F. Marabelli, G. B. Parravicini, and F. Salghetti-Drioli, Optical gap of CuO, Physical Review B, (1995). 52(3), pp. 1433–1436.

A. El-Trass, H. Elshamy, I. El-Mehasseb, and M. El-Kemary, CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids, Applied Surface Science, (2012). 258(7), pp. 2997–3001.

G. Filipic and U. Cvelbar, Copper oxide nanowires: a review of growth, Nanotechnology, (2012). 23(19), Article ID 194001.

J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, and W. Li, Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp, Applied Catalysis A, (2011). 406(1-2), pp. 51–58.

Chen J, Mao S, Xu Z, Ding W., Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv. (2019). 9, pp. 3788–3799.

Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A, Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of gram negative and Gram positive bacteria. J Photochem Photobiol B, (2018). 188, pp. 126–134.

Turakhia B, Divakara MB, Santosh MS, Shah S., Green synthesis of copper oxide nanoparticles: a promising approach in the development of antibacterial textiles. J Coat Technol Res, (2020). 17, pp. 531-540.

Torre LA, Siegel RL, Jemal A, Lung cancer statistics. Adv Exp Med Biol (2016). 893, pp. 1–19.

Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, Ready N, Firstline nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med (2017). 376, pp. 2415–2426.

Seigneuric R, Markey L, Nuyten DSA, Dubernet C, Evelo CTA, Finot E, Garrido C, From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med (2010). 10, pp. 640–652.

Khan, R., Baeshen, M. N., Saini, K. S., Bora, R. S., Al-Hejin, A. M., & Baeshen, N. A., Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens. Biotechnology & Biotechnological Equipment, (2016). 30(5), pp. 1016-1025.‏

Al-Dabbagh, B., Elhaty, I. A., Al Hrout, A. A., Al Sakkaf, R., El-Awady, R., Ashraf, S. S., & Amin, A., Antioxidant and anticancer activities of Trigonella foenum-graecum, Cassia acutifolia and Rhazya stricta. BMC complementary and alternative medicine, (2018). 18, pp. 1-12.‏

Chan, Y. B., Selvanathan, V., Tey, L. H., Akhtaruzzaman, M., Anur, F. H., Djearamane, S. & Aminuzzaman, M., Effect of calcination temperature on structural, morphological and optical properties of copper oxide nanostructures derived from garcinia mangostana L. Leaf Extract. Nanomaterials, (2022). 12(20), pp. 3589.

Pakzad K, Alinezhad H, Nasrollahzadeh M., Green synthesis of Ni@ Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation. Ceram Int., (2019). 45(14), pp. 17173–17182. doi:10.1016/j.ceramint.2019.05.272, (2019).

Atri, A., Echabaane, M., Bouzidi, A., Harabi, I., Soucase, B. M., & Chaâbane, R. B., Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon, (2023). 9(2), ‏e13484.

Nasir, E. M., Alias, M. F. A., & Ali, A. M., The Influence of x ratio and Annealing Temperatures on Structural and Optical Properties for (CuO) x (ZnO) 1-x Composite Thin Films Prepared by PLD. In IOP Conference Series: Materials Science and Engineering (2020). 757(1), p. 012053). IOP Publishing, (2020).‏

Suhail, M. H., Adehmash, I. K., Abdul Kareem, S. M., Tahir, D. A., & Abdullah, O. G., Construction of Cr 2 O 3: ZnO Nanostructured Thin Film Prepared by Pulsed Laser Deposition Technique for NO 2 Gas Sensor. Transactions on Electrical and Electronic Materials, (2020). 21, pp. 355-365.

Abbas, N. K., Green synthesis of CdS: Sn NPs by Starch as a Covering Agent and Studying its Physical Properties. Baghdad Science Journal, (2023). 20(5), pp. 1779.

Naika, H. R., Lingaraju, K., Manjunath, K., Kumar, D., Nagaraju, G., Suresh, D., & Nagabhushana, H., Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal of Taibah University for Science, (2015). 9(1), pp. 7-12.

Rehman, S., Shad, N. A., Sajid, M. M., Ali, K., Javed, Y., Jamil, Y., & Sharma, S. K., Tuning Structural and Optical Properties of Copper Oxide Nanomaterials by Thermal Heating and Its Effect on Photocatalytic Degradation of Congo Red Dye. Iranian Journal of Chemistry and Chemical Engineering, (2022). 41(5), pp. 1549-1560.‏

Mahmood, R., Malik, F., Shamas, S., Ahmed, T., Kausar, M., Rubnawaz, S., & Mirza, B., Pharmacological evaluation of Rhazya stricta root extract. Bol Latinoam Caribe Plant Med Aromat, (2020). 19(2), pp. 188-206.‏

Varughese, A., Kaur, R., & Singh, P., Green synthesis and characterization of copper oxide nanoparticles using Psidium guajava leaf extract. In IOP Conference Series: Materials Science and Engineering, (2020). 961(1), p. 012011. IOP Publishing.‏

Amin, F., Khattak, B., Alotaibi, A., Qasim, M., Ahmad, I., Ullah, R. & Ahmad, R., Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evidence-Based Complementary and Alternative Medicine, (2021).‏

Priya, M., Venkatesan, R., Deepa, S., Sana, S. S., Arumugam, S., Karami, A. M. & Kim, S. C., Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Scientific Reports, (2023). 13(1), pp. 18838.

Tauc J, Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, (1968). 3, pp. 37–46.

M. Kaura, K.P. Muthea, S.K. Despande, S. Choudhury, J.B. Singh, N. Verma, S.K. Gupta, J.V. Yakhmi, Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth, (2006). 289, pp. 670–675.

Dhineshbabu, N. R., Rajendran, V., Nithyavathy, N., & Vetumperumal, R., Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience, (2016). 6, pp. 933-939.

Lakshmanan, S. P., Jostar, S. T., Arputhavalli, G. J., Jebasingh, S., & Josephine, C. M. R., Role of Green Synthesized CuO‎ Nanoparticles of Trigonella Foenum-‎ Graecum L. Leaves and their Impact on‎ Structural Optical and Antimicrobial‎ Activity‎. International Journal of Nanoscience and Nanotechnology, (2021). 17(2), pp. 109-121.‏

Yedurkar, S., Maurya, C., & Mahanwar, P., Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach. Open Journal of Synthesis Theory and Applications, (2016). 5(1), pp. 1-14.‏

A. A. Barzinjy and H. H. Azeez, Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt, SN Appl. Sci., (2020). 2(5), p. 991.

Nallendran, R., Selvan, G., Balu, A.R., NiO coupled CdO nanoparticles with enhanced magnetic and antifungal Properties, Surfaces and Interfaces, (2019). 15, pp. 11–18.

Ashurst, J. V., & Dawson, A. (2018). Klebsiella pneumonia.‏

Faheem Ijaz., Sammia Shahid., Shakeel Ahmad Khan., Waqar Ahmad., Sabah Zaman., Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activities, Tropical Journal of Pharmaceutical Research, (2017). 16(4), pp. 743- 753.

Vala, A. K., Shah, S., Rapid Synthesis of Silver Nanoparticles by a Marine-derived Fungus Aspergillus Niger and their Antimicrobial Potentials, Int. J. Nanosci. Nanotechnol, (2012). 8(4), pp. 197-206.

Khalil, M. M., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D., Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, (2014). 7(6), pp. 1131-1139.‏

Manikandan, D. B., Arumugam, M., Veeran, S., Sridhar, A., Krishnasamy Sekar, R., Perumalsamy, B., & Ramasamy, T., Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. Environmental Science and Pollution Research, (2021). pp. 1-15.‏

I. Khan, K. Saeed, and I. Khan, Nanoparticles: properties, applications and toxicities, Arabian Journal of Chemistry, (2019). 12(7), pp. 908–931.

A. Abbasi, K. Ghorban, F. Nojoomi, and M. Dadmanesh, Smaller copper oxide nanoparticles have more biological effects versus breast cancer and nosocomial infections bacteria, Asian Pacific journal of cancer prevention, (2021). 22(3), pp. 893–902.

Y.H. Ling, L. Liebes, Y. Zou, R. Perez-Soler, J. Biol. Chem. (2003). 278, pp. 33714–33723.

L. Gibellini, M. Pinti, M. Nasi, S.D. Biasi, E. Roat, L. Bertoncelli, A. Cossarizza, Cancer (2010). 2, pp. 1288–1311.

Similar Articles

You may also start an advanced similarity search for this article.