Study of the Optical and Structural Properties of Metal-Doped Titanium Dioxide Electrode Prepared by the Sol-Gel Method for Dye-Sensitized Solar Cells
Main Article Content
Abstract
This study presents a strategy to increase the efficiency of dye-sensitized solar cells (DSSCs) by doping titanium dioxide (TiO2) with different magnesium (Mn) concentrations (1, 3, 5, 7, and 9%) generated by the sol-gel process and effectively employed as a photo-anode (the working electrode) for DSSCs. The Doctor Blade method coated the indium-doped tin oxide (ITO) glass with a thin film layer. X-ray diffraction (XRD) was used to evaluate the characteristics of undoped and manganese-doped TiO2, and the results demonstrate that all of the thin films are anatase. The samples were examined using XRD to assess grain size before and after Mn doping. The spectrum of UV-Vis absorption changes; accordingly, as doping increases, the energy gap decreases. The smallest energy gap's value (2.4 eV) is 7% manganese doping. AFM pictures show the average roughness and root mean square of the weight percentage of films doped with 5%. Field effect scanning electron microscope (FE-SEM) studies show that the particle size of thin films gets smaller as more Mn is added, which happens at least as much as 7% Mn doping. The optimal thickness for TiO2 paste over conductive glass is 15 μm, and the cell's power conversion efficiency increased to 0.604074% with an Imax of 4.965 mA, a Vmax of 0.488 V, and a fill factor (FF) of 68.45954%.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
References
K. Sharma, V. Sharma, and S. S. Sharma, Nanosc. Res. Lett. 13, 381 (2018).
F. H. Ali, Iraqi J. Phys. 16, 28 (2018).
A. Bartkowiak, O. Korolevych, G. L. Chiarello, M. Makowska-Janusik, and M. Zalas, Appl. Surf. Sci. 597, 153607 (2022).
T. Stergiopoulos, E. Rozi, C.-S. Karagianni, and P. Falaras, Nanosc. Res. Lett. 6, 307 (2011).
C.-P. Lee, C.-T. Li, and K.-C. Ho, Mater. Today 20, 267 (2017).
F. J. Al-Maliki and M. A. Al-Rubaiy, Opt. Quan. Elect. 54, 377 (2022).
M. A. Nima and F. J. Kadhim, Iraqi J. Appl. Phys. 17, 9 (2021).
M. M. Mohsin and F. H. Ali, Chem. Methodol. 7, 335 (2023).
A. H. Hasan and F. Hasan, Indian J. Nat. Sci. 9, 15242 (2018).
A. M. Alqudsi and K. A. Saleh, Baghdad Sci. J. 21, 1243 (2024).
K. Mangersnes, Ph.D Thesis, University of Oslo, 2011.
N. E. Martínez and P. Cart, Ph.D Thesis, University of Bretagne Loire, 2012.
A. S. Al-Ezzi and M. N. M. Ansari, 5 5, 67 (2022).
W. A. Al-Taa'y and B. A. Hasan, Iraqi J. Phys. 19, 22 (2021).
R. Su, R. Bechstein, J. Kibsgaard, R. T. Vang, and F. Besenbacher, J. Mater. Chem. 22, 23755 (2012).
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature 388, 431 (1997).
B. Pradhan, S. K. Batabyal, and A. J. Pal, Sol. En. Mater. Sol. Cell. 91, 769 (2007).
F. Arjmand and Z. R. Ranjbar, Heliyon 8, e11692 (2022).
J. Halme, MS.c Thesis, Helsinki University of Technology, 2002.
A. A. Salman, M.Sc. Thesis, Al-Nahrain University, 2012.
A. A. Al-Khafaji, D. B. Alwan, F. H. Ali, and W. Twej, Envir. Sci. Indian J. 12, 217 (2016).
S. N. R. Inturi, T. Boningari, M. Suidan, and P. G. Smirniotis, Appl. Cat. B Envir. 144, 333 (2014).
S. Sharma, S. Chaudhary, S. C. Kashyap, and S. K. Sharma, J. Appl. Phys. 109, 083905 (2011).
M. M. Abbas and M. Rasheed, Iraqi J. Phys. 19, 1 (2021).
F. H. Ali, Journal of Physics: Conference Series (IOP Publishing, 2021). p. 012076.
N. M. Jabbar and M. M.-A. Hussein, Iraqi J. Phys. 20, 109 (2022).