Assessment of Wind Energy in the Ali Al-Gharbi Region
Main Article Content
Abstract
Assessment of wind resources is an important issue in the wind industry. This study aims to assess wind energy in southern Iraq, especially in the Ali Al-Gharbi region. It includes field data for the wind speed at two altitudes (30 and 50m) in 2017, using the Weibull Distribution, wind power density and wind energy density equations. The probability density distribution of mean wind speed and daily, monthly, and seasonal wind speeds were calculated. The monthly mean wind power density and wind energy density at heights (30 and 50m) were estimated. The suitable wind turbine in this study area was the Unison U50. The capacity factor was assessed. The results showed a northwesterly prevailing wind speed direction in the study area. Mean wind speed increases during day hours and decreases during night hours throughout the four seasons. The highest monthly mean wind speed is in May and June. The highest seasonal mean wind speed is in spring and summer, while the lowest is in winter and autumn. The highest monthly mean of wind power density and wind energy density were in June, while the lowest values were in February. The highest monthly values of wind power, wind energy, and capacity factor were (5851.11kW, 4212802.15kW.h, 78%) respectively, while the lowest monthly values were (1080.43kW, 777913.34kW.h, 14%), respectively.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
References
Q. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, and M. Jaszczur, Renew. Energy Focus 48, 100545 (2024). doi.org/10.1016/j.ref.2024.100545
M. Özdede, Middle East Techno. University, 312, 34 (2013). https://www.researchgate.net/publication/304489685_Wind_Resource_Assessment_and_wind_farm_modeling_in_Bodrum_Peninsula
A. S. Hassan, and J. H. Kadhum, Al-Mustanṣiriyah, J. Sci. 32, 47 (2021). doi.org/10.23851/mjs.v32i2.982
B. A. Al-Knani, I. H. Abdulkareem, H. A. Nemah, and Z. Nasir, Baghdad Sci. J. 18, 1076 (2021). doi.org/10.21123/bsj.2021.18.2(suppl.).1076
P. Singh, S. Singh, G. Kumar, and P. Baweja, Energy (India: J. Wiley & Sons) (2021). http://books.google.ie/books
F. A. Hadi, B. A. Al-Knani, and R, A. Abdulwahab, Sci. Rev. Eng. Environ. Studies 29, 37 (2020). doi.org/10.22630/pniks.2020.29.1.4
N. E. Munjong, Ph.D. thesis, Centria University of Applied Sciences, 2022. https://urn.fi/URN:NBN:fi:amk-202203284086
K. N. Nwaigwe, Inter. J. Environ. Sci. Techno. 19, 4525 (2021). doi.org/10.1007/s13762-021-03402-2
C. ANDRO, US Wind Industry Annual Market Report (American: American Wind Energy Association) (2009). http://books.google.ie/books
Z. H. Hulio, W. Jiang, and S. Rehman, Energy Strategy Rev. 26, 75 (2019). doi.org/10.1016/j.esr.2019.100375
C. Pérez, M. Rivero, M. Escalante, V. Ramirez, and D. Guilbert, Energies 16, 34 (2023). doi.org/10.3390/en16104134
A. K. Resen, Iraqi J. Sci. 56, 1216 (2023). https://www.ijs.uobaghdad.edu.iq/index.php/eijs/article/view/10272
M. A. Rasham, Inter. J. Comp. Appl. 137, 5 (2016). https://doi.org/10.5120/ijca2016908862
M. Bashaer, O. Abdullah, and A. Al-Tmimi, FME Trans. 48, 155 (2020). doi:10.5937/fmet2001155B
Z. O. Olaofe, K. A. Folly, Inter. J. Renew. Res. 2, 251 (2012). https://www.ijrer.com/index.php/ijrer/article/download/176/pdf
B. A. Al-Knani, Ph.D. thesis, Mustansiriyah University, 2015.
A. E. Onay, E. Dokur, and M. Kurban, Elektronika Ir Elektro. 27, 41 (2021). https://doi.org/10.5755/j02.eie.28919
A. Betz, Introduction to the Theory of Flow Machines (American: Elsevier) (2014). http://books.google.ie/books
M. Z. Ibrahim, Y. K. Hwang, M. Ismail, A. Albani, Inter. J. Renew. Energy Res. 5, 201 (2015). https://doi.org/10.20508/ijrer.82741
H. Pourasl, and V. M. Khojastehnezhad, J. Power Energy 235, 1563 (2021). https://doi.org/10.46717/igj.56.1a.12ms-2023-1-24
H. K. Yadav, S. Yadav, M. N. Gupta, A. Sarkar, and J. Sarkar, Sustain. Energy Techno. Assess. 64, 103744 (2024). https://doi.org/10.1016/j.seta.2024.103744
L. Bauer, (n.d.). Unison U50 - 750,00 kW - Wind turbine. https://en.wind-turbine-models.com/turbines/1562-unison-u50#datasheet
T. J. Chang, C. L. Chen, H. T. Yeh, and Y.T. Wu, Energy Convers. Manage. 95, 435 (2015). https://doi.org/10.1016/j.enconman.2015.02.033
R. Bhandari, B. Kumar, and F. Mayer, J. Clean. Prod. 277, 1233 (2020). https://doi.org/10.1016/j.jclepro.2020.123385
J. Park, K. H. Ryu, C. H. Kim, W. C. Cho, M. Kim, and J. H. Lee, Appl. Energy, 340, 121016 (2023). https://doi.org/10.1016/j.apenergy.2023.121016