Preparation and Study the Properties of PVDF/PEO/WO2 Hybrid Nanocomposite Thin Films Prepared by a Spin Coating Method

Main Article Content

Aseel N. Bardan
Lamia K. Abbas

Abstract

In this work, using the spin coating method to create polyvinylidene fluoride (PVDF)/polyethylene oxide (PEO) thin films, the effects of nano-tungsten oxide (WO2) doping were investigated. The novelty of this research lies in its investigation of varying weight concentrations of WO2 nanoparticles (NPs) within the composite films. Comprehensive characterization techniques were employed, including structural analysis via X-ray diffraction (XRD), which revealed a clear and prominent peak in the XRD of the PVDF/PEO films, and the films' polycrystalline nature with tetragonal structures. The grain size was noted to increase with higher WO2 NPs doping. Field emission scanning electron microscopy (FE-SEM) showed hexagonal-like α-phase PVDF crystals and uniform distribution of WO2 NPs. Furthermore, Fourier-transform infrared spectroscopy (FTIR) confirmed the characteristics of PVDF/PEO and identified specific doping compounds, confirming successful incorporation. The optical transmittance spectra unveiled the films' optical band gap energy, optical transition types, and absorption characteristics, where novelty emerged as the band gap energy significantly increased from 3.0 eV to 3.64 eV with an increased WO2 NPs weight doping percentage, signifying profound electronic structure modifications and potential applications in optoelectronics and sensors.

Article Details

How to Cite
1.
Preparation and Study the Properties of PVDF/PEO/WO2 Hybrid Nanocomposite Thin Films Prepared by a Spin Coating Method. IJP [Internet]. 2024 Mar. 1 [cited 2024 Apr. 27];22(1):82-94. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1212
Section
Articles

How to Cite

1.
Preparation and Study the Properties of PVDF/PEO/WO2 Hybrid Nanocomposite Thin Films Prepared by a Spin Coating Method. IJP [Internet]. 2024 Mar. 1 [cited 2024 Apr. 27];22(1):82-94. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1212

References

L. T. White, Hazardous Gas Monitoring: A Guide for Semiconductor and other Hazardous Occupancies (UK, William Andrew, 2001).

Y. Huang, S. Kormakov, X. He, X. Gao, X. Zheng, Y. Liu, J. Sun, and D. Wu, Polymers 11, 187 (2019).

A. A. Hashim, Polymer Thin Films (Rijeca, Croatia, InTechOpen, 2010).

L. H. Madkour, Nanoelectronic Materials: Fundamentals and Applications (Baljarashi, Suadi Arabia, Springer, 2019).

L. W. Mckeen, Film Properties of Plastics and Elastomers (Cambridge, US, William Andrew, 2017).

M. A. Abed, F. A. Mutlak, A. F. Ahmed, U. M. Nayef, S. K. Abdulridha, and M. S. Jabir, Journal of Physics: Conference Series (Baghdad, Iraq IOP Publishing, 2021). p. 012013.

S. S. Khudiar, F. a.-H. Mutlak, and U. M. Nayef, Optik 247, 167903 (2021).

S. S. Khudiar, U. M. Nayef, F. a.-H. Mutlak, and S. K. Abdulridha, Optik 249, 168300 (2022).

X. Wan, H. Cong, G. Jiang, X. Liang, L. Liu, and H. He, ACS Appl. Nano Mat. 6, 1522 (2023).

R. Donate, R. Paz, R. Moriche, M. J. Sayagués, M. E. Alemán-Domínguez, and M. Monzón, Mat. Des. 231, 112085 (2023).

S. Mohammadpourfazeli, S. Arash, A. Ansari, S. Yang, K. Mallick, and R. Bagherzadeh, RSC Advan. 13, 370 (2023).

Z. Feng, Z. Zhao, Y. Liu, Y. Liu, X. Cao, D. G. Yu, and K. Wang, Advan. Mat. Tech. 8, 2300021 (2023).

R. Sun, Q. Tian, M. Li, H. Wang, J. Chang, W. Xu, Z. Li, Y. Pan, F. Wang, and T. Qin, Advan. Funct. Mat. 33, 2210071 (2023).

S. Barrau, A. Ferri, A. Da Costa, J. Defebvin, S. Leroy, R. Desfeux, and J.-M. Lefebvre, ACS Appl. Mat. Interf. 10, 13092 (2018).

V. Caramia, I. S. Bayer, G. C. Anyfantis, R. Ruffilli, F. Ayadi, L. Martiradonna, R. Cingolani, and A. Athanassiou, Nanotechnology 24, 055602 (2013).

Q. M. Al-Bataineh, A. A. Ahmad, A. M. Alsaad, A. Migdadi, and A. Telfah, Phys. B: Conden. Matt. 645, 414224 (2022).

E. Maccaferri, J. Ortolani, L. Mazzocchetti, T. Benelli, T. M. Brugo, A. Zucchelli, and L. Giorgini, ACS Omega 7, 23189 (2022).

M. R. De Campos, A. L. Botelho, and A. C. Dos Reis, Poly. Bull. 80, 7313 (2023).

R. M. N. Javed, A. Al-Othman, M. Tawalbeh, and A. G. Olabi, Renew. Sust. Ener. Rev. 168, 112836 (2022).

M. Batool, M. N. Haider, and T. Javed, J. Inorgan. Organomet. Poly. Mat. 32, 4478 (2022).

C. Pittarate, T. Yoovidhya, W. Srichumpuang, N. Intasanta, and S. Wongsasulak, Poly. J. 43, 978 (2011).

H. M. Hawy and I. M. Ali, Optik 267, 169659 (2022).

H. M. Hawy and I. M. Ali, Optik 262, 169263 (2022).

B. M. Alshabander, Inorg. Nano-Metal Chem. 50, 1329 (2020).

A. A. Salman and A. Al‐Janabi, Micro. Opt. Tech. Lett. 62, 2257 (2020).

J. Ramírez-Salgado, R. Quintana-Solórzano, I. Mejía-Centeno, H. Armendáriz-Herrera, A. Rodríguez-Hernández, M. De Lourdes Guzman-Castillo, and J. S. Valente, Appl. Surf. Sci. 573, 151428 (2022).

S. Supothina, P. Seeharaj, S. Yoriya, and M. Sriyudthsak, Ceram. Int. 33, 931 (2007).

J. Gutpa, H. Shaik, K. N. Kumar, and S. A. Sattar, Mat. Sci. Semicond. Proces. 143, 106534 (2022).

M.-U. Nisa, N. Nadeem, M. Yaseen, J. Iqbal, M. Zahid, Q. Abbas, G. Mustafa, and I. Shahid, J. Nanostruct. Chem. 13, 1 (2022).

S. Mujawar, A. Inamdar, S. Patil, and P. Patil, Sol. St. Ion. 177, 3333 (2006).

A. Patterson, Phys. Rev. 56, 978 (1939).

S. M. Al-Jawad, A. A. Taha, and A. M. Redha, J. Sol-Gel Sci. Tech. 91, 310 (2019).

T. Iqbal, M. Irfan, S. M. Ramay, H. M. Gaithan, A. Mahmood, and M. Saleem, Mat. Res. Expr. 6, 075322 (2019).

C. Rameshkumar, S. Sarojini, K. Naresh, and R. Subalakshmi, J. Surf. Sci. Tech. 33, 12 (2017).

A. K. Khaleel and L. K. Abbas, Optik 272, 170288 (2023).

H. Wang, C.-D. Feng, S.-L. Sun, C. U. Segre, and J. R. Stetter, Sens. Actuat. B: Chem. 40, 211 (1997).

S. M. Costa, D. P. Ferreira, A. Ferreira, F. Vaz, and R. Fangueiro, Nanomaterials 8, 1069 (2018).

X. Cai, T. Lei, D. Sun, and L. Lin, RSC Advan. 7, 15382 (2017).

P. Martins, A. Lopes, and S. Lanceros-Mendez, Prog. Poly. Sci. 39, 683 (2014).

Z. Cui, N. T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y. M. Lee, Prog. Poly. Sci. 51, 94 (2015).

F. F. Gondim, L. G. P. Tienne, B. D. S. Macena Da Cruz, E. G. Chaves, A. C. De Carvalho Peres, and M. D. F. V. Marques, J. Appl. Poly. Sci. 138, 50157 (2021).

A. P. Indolia and M. Gaur, J. Poly. Res. 20, 1 (2013).

M. Mohammed, J. Mole. Struct. 1169, 9 (2018).

M. Mohammed, J. Molec. Struct. 1169, 9 (2018).

S. A. Hamdan, Iraqi J. Phys. 17, 77 (2019).

J. Tauc and A. Menth, J. Non-Crystall. Sol. 8, 569 (1972).

Z. Li and C. Wang, One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers (London, UK, Springer, 2013).

S. Pervaiz, N. Kanwal, S. Hussain, M. Saleem, and I. Khan, J. Poly. Res. 28, 1 (2021).

S. Shukla, N. K. Sharma, and V. Sajal, Opt. Quant. Elect. 48, 1 (2016).

N. Narayanan and D. Nk, Mat. Res. 21, e20180034 (2018).

M. Basappa, H. Ganesha, S. Veeresh, Y. Nagaraju, M. Vandana, H. Vijeth, and H. Devendrappa, Chem. Phys. Lett. 799, 139609 (2022).

M. O. Salman, M. A. Kadhim, and A. A. Khalefa, Iraqi J. Sci. 64, 1190 (2023).

Similar Articles

You may also start an advanced similarity search for this article.