Structural Characteristics and Photocatalytic activity of TiO2/Si3N4 nanocomposite synthesized via plasma sputtering technique
Main Article Content
Abstract
This work evaluates a new TiO2/Si3N4 catalyst that was prepared by deposition of thin films of Si3N4 and TiO2 nanostructures on glass using lab made closed field unbalanced dc reactive magnetron sputtering technique. A highly-pure silicon sheet and titanium sheet were used as a sputtering target and gas mixture of (Ar: N2), (Ar∶O2) with mixing ratios of (50:50) for each were used to prepare TiO2/Si3N4 sample, respectively. This sample has been heat treatment. The structure and morphology of the catalyst were determined by X-ray diffraction, Field-Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray (EDX) Spectroscopy, and Fourier transform infrared (FTIR) spectroscopy tests. The resultant nanocomposite sample was polycrystalline and there were no impurities in the investigated nanocomposite as revealed by XRD analysis. The absorption edge was found to be at 420 nm, as revealed by d UV-visible spectroscopy. The results obtained from the photodegradation of organic pollutants under a Xenon lamp indicate that TiO2/Si3N4 nanocomposite's photocatalytic activity is significantly more effective than TiO2 nanophotocatalyst.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
F. Hasanvandian, A. Shokri, M. Moradi, B. Kakavandi and S. R. Setayesh, Journal of Hazardous Materials., 423, 127090. (2022).
A. Payan, A. A. Isari and N. Gholizade, Chemical Engineering Journal, 361, 1121–1141. (2019).
M. B. Al-Taee, Ban Alshabander, Iraq. J. Phys. Vol. 21 No. 1 (2023)
R. Krakowiak, J. Musial, P. Bakun, M. Spychała, B. Czarczynska-Goslinska, D.T Mlynarczyk, T. Koczorowski, L. Sobotta, B. Stanisz, T. Goslinski, Applied Science, 11(18), 8674. (2021).
E.A. Elgohary, Y.M.A. Mohamed, H.A. El Nazer, O. Baaloudj, M.S.S Alyami, A. El Jery, A.A. Assadi, A. Amrane, Catalysts, 11(12), 1498. ( 2021).
A. Bahadoran, J.R. De Lile, S. Masudy-Panah, B. Sadeghi, J. Li, M.H. Sabzalian, S. Ramakrishna, Q. Liu, P. Cavaliere, A. Gopinathan, J. Manuf. Mater. Process., 6, 69. (2022).
A. Fujishima, X. Zhang, Comptes Rendus Chim. 9, 750–760. (2006).
S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Water Air Soil Pollut., 215, 3–29. (2011).
A.A. Hussain and H.S. Wahab, Int. J. Nanotech. Nanosci., 2, 1-6. (2014).
S. Sério, M.E. Melo Jorge, M.L. Coutinho and E. Nunes, Chem. Phys. Lett., 508 71–75. (2011).
M. A. Hameed and Z. M. Jabbar, Iraqi J. Appl. Phys. 12(4), 13–18 (2016).
H. G. Fahad and O. A. Hammadi, Iraqi J. Appl. Phys. 16(2), 37–42 (2020).
JCPDS 1979, C 29-1133, Joint Committee on Powder Standards, International Center for Diffraction Data, USA (1979).
A. Hu, X. Zhang, D. Luong, K.D. Okaes, M. Servos, R. Liang, S. Kurdi, P. Peng, Z. Yushan, Waste Biomass Valorization 3, 443–449 (2012).
K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, Kasetsart J. (Nat. Sci.) 42, 357–361 (2008).
Greenwood NN and Ross EJF. Index of vibrational spectra of inorganic and organometallic compounds (Vol. III). London: The Butterworth Group, p. 800, 1078 (1966).
12- F. J. Kadhim, O. A. Hammadi, E. A. Al-Oubidy, Iraqi Journal of Science, Special Issue, pp: 91-98.(2019).
E. A. al-Oubidy, F. J. al-Maliki Iraqi journal of applied physics vol. (14), no. (4), pp. 19-23. (2018).
Y. Zhao, C. Li, X. Liu, F. Gu, H. Jiang, W. Shao, L. Zhang, Materials Letters 61, 79–83 (2007).
A. Zachariah, K.V. Baiju, S. Shukla, K.S. Deepa, J. James, and K.G.K. Warrier, J. Phys. Chem. C, 112, pp11345–11356 (2008).
O. A. Hammadi, F. J. Kadhim, and E. A. Al-Oubidy, Nonlinear Opt. Quantum Opt. 51(1–2), 67–78 (2019).