Effect of Annealing Process on the Morphological, Optical and Electrical Properties of Cu:MnO Films Prepared by PLD Technique

Main Article Content

Doaa T. Mohammed
Ghuson H. Mohammed

Abstract

In this study, Nd:YAG laser pulses with a wavelength of 1064 nm, a power of 500 mJ, a pulse width of 9 ns, and a repetition frequency of 6 Hz were used to hit a manganese oxide (MnO) target surface 300 times. Pure MnO and copper Cu-doped MnO (Cu:MnO) with different amounts of Cu (0.03, 0.05, 0.07, and 0.09 wt%) produced by PLD were studied. Cu:MnO thin films were annealed at 473 K, and their morphological, optical, and electrical characteristics were studied. The results of the atomic force microscopic (AFM) investigation of morphological properties showed that Cu dopant impacted the creation of roughness and particle size in MnO2 films. The optical transmission was examined using a UV-Vis spectrophotometer. The highest optical absorption was noted at 0.09 dopant content. The dielectric constants' real (εr) and imaginary (εi) components, as well as the extinction coefficient (k), refractive index (n), and other optical constants, were studied. At an annealing temperature of (473 K), Hall effect studies demonstrate that all produced films exhibit a P-type conductivity.

Article Details

Section

Articles

How to Cite

1.
Mohammed DT, Mohammed GH. Effect of Annealing Process on the Morphological, Optical and Electrical Properties of Cu:MnO Films Prepared by PLD Technique. IJP [Internet]. 2024 Jun. 1 [cited 2025 Jan. 21];22(2):48-56. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1226

References

K. A. Aadim Ph D and A. S. Jasim Ph D, Karbala Int. J. Mod. Sci. 8, 71 (2022).

G. Jimenez-Cadena, J. Riu, and F. X. Rius, Analyst 132, 1083 (2007).

G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).

M. A. Abood and B. A. Hasan, Iraqi J. Sci. 64, 2282 (2023).

R. S. Mohammed, K. A. Aadim, and K. A. Ahmed, Karbala Int. J. Mod. Sci. 8, 88 (2022).

A. A. Almaula, Ç. Y. Ataol, and G. H. Mohammed, J. Pharm. Neg. Res. 13, 936 (2022).

Z. N. Majeed, A.-M. E. Al-Samarai, and G. H. Mohammed, Tikrit J. Pure Sci. 23, 76 (2018).

M. Suriyavathana and K. Ramalingam, Int. J. Chem. Tech. Res. 8, 466 (2015).

M. Sharrouf, R. Awad, M. Roumie, and S. Marhaba, Mater. Sci. Appl. 6, 850 (2015).

E. K. Jassem, A. M. A. Majeed, and N. M. Umran, Journal of Physics: Conference Series (IOP Publishing, 2019). p. 012004.

S. Ganeshan, P. Ramasundari, A. Elangovan, G. Arivazhagan, and R. Vijayalakshmi, Int. J. Sci. Res. Phys. Appl. Sci. 5, 5 (2017).

S. Thirumalairajan, K. Girija, M. Sudha, P. Maadeswaran, and J. Chandrasekaran, Optoelect. Advan. Mater. Rapid Commun. 2, 779 (2008).

K. J. Kim and Y. R. Park, J. Crys. Grow. 270, 162 (2004).

R. Baca, Mater. Sci. Semicond. Proces. 16, 1280 (2013).

C. Liu, S. Navale, Z. Yang, M. Galluzzi, V. Patil, P. Cao, R. Mane, and F. Stadler, J. All. Comp. 727, 362 (2017).

A. Dakhel, Thin Sol. Fil. 496, 353 (2006).

H. Xia, Y. Wan, F. Yan, and L. Lu, Mater. Chem. Phys. 143, 720 (2014).

F. Chahshouri, E. Khani, H. Savaloni, and R. Savari, SRPH J. Fund. Sci. Tech. 3, 1 (2021).

H. Jamil, M. Khaleeq-Ur-Rahman, I. Dildar, and S. Shaukat, Laser Phys. 27, 096101 (2017).

E. Vlakhov, R. Chakalov, R. Chakalova, K. Nenkov, K. Dörr, A. Handstein, and K.-H. Müller, J. Appl. Phys. 83, 2152 (1998).

K. H. Hwang, S. H. Lee, and S. K. Joo, J. Electrochem. Soci. 141, 3296 (1994).

H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, and Z. Gu, Nano Lett. 8, 2664 (2008).

O. Erlandsson, J. Lindvall, N. N. Toan, N. V. Hung, V. T. Bich, and N. N. Dinh, Phys. stat. Sol. 139, 451 (1993).

O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Sol. Fil. 444, 44 (2003).

L. Feng, Z. Xuan, H. Zhao, Y. Bai, J. Guo, C.-W. Su, and X. Chen, Nanosc. Res. Lett. 9, 1 (2014).

M. Jayandran, M. M. Haneefa, and V. Balasubramanian, J. Appl. Pharmaceut. Sci. 5, 105 (2015).

J. Fei, Y. Cui, X. Yan, W. Qi, Y. Yang, K. Wang, Q. He, and J. Li, Advan. Mater. 20, 452 (2008).

B. P. Kumar, K. Shivaprasad, R. Raveendra, R. H. Krishna, S. Karikkat, and B. Nagabhushana, Int. J. Appl. Innov. Eng. Manag. 3, 102 (2014).

G. Zhang, L. Zheng, M. Zhang, S. Guo, Z.-H. Liu, Z. Yang, and Z. Wang, Ener. Fuels 26, 618 (2012).

M. Zahan and J. Podder, SN Appl. Sci. 2, 385 (2020).

D. T. Mohammed and G. H. Mohammed, E. Euro. J. Phys., 391 (2023).

G. H. Mohammed, Iraqi J. Phys. 13, 82 (2015).

K. A. Aadim, N. K. Abbas, and A. T. Dahham, Iraqi J. Sci. 59, 1567 (2018).

A. Hendi, M. Al-Kuhaili, and S. Durrani, Int. J. Res. Eng. Tech. 5, 320 (2016).

M. A. Dahamni, M. Ghamnia, S. E. Naceri, C. Fauquet, D. Tonneau, J.-J. Pireaux, and A. Bouadi, Coatings 11, 598 (2021).

N. A. Daham, A. K. Al-Rawi, and G. H. Mohamed, Ibn Al-Haitham J. Pure Appl. Sci. 23, 86 (2010).

N. Naeema, A. Kudher, and G. H. Mohammed, IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2020). p. 012024.

A. N. Mohsin, B. H. Adil, H. Q. Khaleel, R. A. Al-Ansari, and I. R. Swadi, Int. J. Appl. Sci. Tech. 4, 80 (2022).

E. J. Mohammed, A. K. Abbas, and K. A. Aadim, Iraqi J. Phys. 18, 21 (2020).

K. A. Al-Hamdani, Iraqi J. Phys. 8, 28 (2010).

K. A. Adem, Iraqi J. Phys. 5, 15 (2008).

J. Peinke, J. Parisi, O. E. Rössler, and R. Stoop, Encounter with chaos: self-organized hierarchical complexity in semiconductor experiments (Germany, Springer Science and Business Media, 2012).

H. J. A. Karim and G. H. Mohammed, Iraqi J. Phys. 19, 75 (2021).

C. Iordanescu, D. Tenciu, I. Feraru, A. Kiss, M. Bercu, D. Savastru, R. Notonier, and C. Grigorescu, Dig. J. Nanomater. Biostruct. 6, 863 (2011).

J. Wiley, Introduction to Solid State Physics (New York, John Wiley and Sons, 1986), p.185.

Z. S. Mahdi and G. H. Mohammed, J. Sur. Fisher. Sci. 10, 5658 (2023).

Similar Articles

You may also start an advanced similarity search for this article.