Current Density of AlxGa1-xAs/GaAs Superlattice

Main Article Content

Ahmed Z. Obaid
Nidhal M. Abdul-Ameer
https://orcid.org/0000-0002-7748-2373
Shaymaa Q. Abdul-Hasan
Ebtisam M-T. Salman
Moafak C. Abdulrida

Abstract

Theoretically, the AlxGa1-xAs/GaAs superlattice is studied as a function of optical energy with and without bias. The transfer matrix approach has determined the transmission coefficient and resonant tunnelling current density. The number of barriers is estimated at N = 3, and the concentration ratio (the mole fraction value) x at 0.1, 0.2, and 0.3 is fixed. The number of cells in the well is established at (ncw) = 5, while the number of barrier cells (ncb) is changed from 1 to 5 for both biases. This study shows that the change in the number of barrier cells plays a crucial role in the tunnelling of charge carriers and the transmission probability of charge carriers through the depletion regions. Thus, changing the current density is based on the purpose to be applied. In addition, the values ​​of current density at the reverse bias are higher than that in the forward bias, which is explained by the bias controlling the energy levels of the superlattice. It is worth noting that there are many practical applications in which this system can be used, including solar cells, detectors, and light-emitting diodes.

Article Details

How to Cite
1.
Obaid AZ, Abdul-Ameer NM, Abdul-Hasan SQ, Salman EM-T, Abdulrida MC. Current Density of AlxGa1-xAs/GaAs Superlattice. IJP [Internet]. 2024 Sep. 1 [cited 2024 Sep. 1];22(3):78-92. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1252
Section
Articles

References

V. Kunets, Ph.D Thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2004.

M. R. Jobayr and E. M. T. Salman, Chinese J. Phys. 74, 270 (2021). DOI: 10.1016/j.cjph.2021.07.041.

M. R. Jobayr and E. M. T. Salman, J. Semicond. 44, 032001 (2023). DOI: 10.1088/1674-4926/44/3/032001.

M. R. Jubayr, E. M. T. Salman, and A. S. Kiteb, Ibn AL-Haitham J. Pure Appl. Sci. 23, 95 (2010).

R. J. Martín-Palma, J. Martínez-Duart, and F. Agulló-Rueda, Nanotechnology for Microelectronics and Optoelectronics (Amsterdam, Netherlands, Elsevier, 2006).

P. Mazumder, S. Kulkarni, M. Bhattacharya, S. Jian Ping, and G. I. Haddad, Proce. IEEE 86, 664 (1998). DOI: 10.1109/5.663544.

Z. I. Alferov, Chem. Phys. Chem. 2, 500 (2001). DOI: 10.1002/1439-7641(20010917)2:8/9<500::AID-CPHC500>3.0.CO;2-X.

H. Kroemer, Proce. IEEE 70, 13 (1982). DOI: 10.1109/PROC.1982.12226.

K. M. Qader and E. M. T. Salman, En. Proce. 157, 75 (2019). DOI: 10.1016/j.egypro.2018.11.166.

E. Salmana, M. Jobayrb, and H. Hassuna, J. Ovon. Res. 18, 617 (2022). DOI: 10.15251/JOR.2022.184.61.

F. G. Smith, T. A. King, and D. Wilkins, Optics and Photonics: An Introduction (England, John Wiley & Sons, 2007).

M. Semtsiv, Ph.D Thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2004.

J. Nanda, P. K. Mahapatra, and C. L. Roy, Phys. B Conden. Mat. 383, 232 (2006). DOI: 10.1016/j.physb.2006.03.021.

A. Talhi, K. Bouzidi, A. Belghachi, and M. B. Azizi, Third International Conference on Energy, Materials, Applied Energetics and Pollution (Constantine, Algeria ICEMAEP, 2016). p. 574.

A. Abolghasemi and R. Kohandani, Appl. Opt. 57, 7045 (2018). DOI: 10.1364/AO.57.007045.

P. Panchadhyayee, R. Biswas, A. Khan, and P. K. Mahapatra, J. Phys. Conden. Mat. 20, 275243 (2008). DOI: 10.1088/0953-8984/20/27/275243.

E. I. Vasilkova, E. V. Pirogov, M. S. Sobolev, A. I. Baranov, A. S. Gudovskikh, R. A. Khabibullin, and A. D. Bouravleuv, Phys. Scrip. 99, 025951 (2024). DOI: 10.1088/1402-4896/ad1cbb.

L. Esaki, IEEE J. Quant. Elect. 22, 1611 (1986). DOI: 10.1109/JQE.1986.1073162.

D. Mukherji and B. R. Nag, Phys. Rev. B 12, 4338 (1975). DOI: 10.1103/PhysRevB.12.4338.

J. W. Lee and M. A. Reed, J. Vacu. Sci. Tech. B Microelect. Proce. Phenom. 5, 771 (1987). DOI: 10.1116/1.583745.

Y. Mao, X. X. Liang, G. J. Zhao, and T. L. Song, Journal of Physics: Conference Series (Prague, Czech Republic 2014). p. 012172.

W. L. Bloss, Phys. Rev. B 44, 8035 (1991). DOI: 10.1103/PhysRevB.44.8035.

I. B. Spielman, Ph.D Thesis, California Institute of Technology, 2004.

P. Keshagupta, Sci. Tech. Asia 2, 75 (2015).

C. Pacher, W. Boxleitner, and E. Gornik, Phys. Rev. B 71, 125317 (2005).DOI: 10.1103/PhysRevB.71.125317.

M. Shen and W. Cao, Mat. Sci. Eng. B 103, 122 (2003). DOI: 10.1016/S0921-5107(03)00159-4.

S. E. Lyshevski, Nano and Molecular Electronics Handbook (Boca Raton, CRC Press, 2018).

B. Jonsson and S. T. Eng, IEEE J. Quant. Elect. 26, 2025 (1990). DOI: 10.1109/3.62122.

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, IEEE J. Quant. Elect. 24, 1524 (1988). DOI: 10.1109/3.7079.

S. S. Allen and S. L. Richardson, Phys. Rev. B 50, 11693 (1994). DOI: 10.1103/PhysRevB.50.11693.

S. Shrestha, N. Bhusal, S. Byahut, and C. K. Sarkar, BIBECHANA 18, 91 (2021).DOI: 10.3126/bibechana.v18i1.27450.

J. W. Choe, H. J. Hwang, A. G. U. Perera, S. G. Matsik, and M. H. Francombe, J. Appl. Phys. 79, 7510 (1996). DOI: 10.1063/1.362422.

M. Vasconcelos, E. Albuquerque, and A. Mariz, J. Phys. Conden. Mat. 10, 5839 (1998). DOI: 10.1088/0953-8984/10/26/012.

J. P. Sun, G. I. Haddad, P. Mazumder, and J. N. Schulman, Proce. IEEE 86, 641 (1998). DOI: 10.1109/5.663541.

R. F. Jao and J. Z. Lai, Journal of Physics: Conference Series (IOP Publishing, 2023). p. 012039.

Similar Articles

You may also start an advanced similarity search for this article.