Current Density of AlxGa1-xAs/GaAs Superlattice
Main Article Content
Abstract
Theoretically, the AlxGa1-xAs/GaAs superlattice is studied as a function of optical energy with and without bias. The transfer matrix approach has determined the transmission coefficient and resonant tunnelling current density. The number of barriers is estimated at N = 3, and the concentration ratio (the mole fraction value) x at 0.1, 0.2, and 0.3 is fixed. The number of cells in the well is established at (ncw) = 5, while the number of barrier cells (ncb) is changed from 1 to 5 for both biases. This study shows that the change in the number of barrier cells plays a crucial role in the tunnelling of charge carriers and the transmission probability of charge carriers through the depletion regions. Thus, changing the current density is based on the purpose to be applied. In addition, the values of current density at the reverse bias are higher than that in the forward bias, which is explained by the bias controlling the energy levels of the superlattice. It is worth noting that there are many practical applications in which this system can be used, including solar cells, detectors, and light-emitting diodes.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
References
V. Kunets, Ph.D Thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2004.
M. R. Jobayr and E. M. T. Salman, Chinese J. Phys. 74, 270 (2021). DOI: 10.1016/j.cjph.2021.07.041.
M. R. Jobayr and E. M. T. Salman, J. Semicond. 44, 032001 (2023). DOI: 10.1088/1674-4926/44/3/032001.
M. R. Jubayr, E. M. T. Salman, and A. S. Kiteb, Ibn AL-Haitham J. Pure Appl. Sci. 23, 95 (2010).
R. J. Martín-Palma, J. Martínez-Duart, and F. Agulló-Rueda, Nanotechnology for Microelectronics and Optoelectronics (Amsterdam, Netherlands, Elsevier, 2006).
P. Mazumder, S. Kulkarni, M. Bhattacharya, S. Jian Ping, and G. I. Haddad, Proce. IEEE 86, 664 (1998). DOI: 10.1109/5.663544.
Z. I. Alferov, Chem. Phys. Chem. 2, 500 (2001). DOI: 10.1002/1439-7641(20010917)2:8/9<500::AID-CPHC500>3.0.CO;2-X.
H. Kroemer, Proce. IEEE 70, 13 (1982). DOI: 10.1109/PROC.1982.12226.
K. M. Qader and E. M. T. Salman, En. Proce. 157, 75 (2019). DOI: 10.1016/j.egypro.2018.11.166.
E. Salmana, M. Jobayrb, and H. Hassuna, J. Ovon. Res. 18, 617 (2022). DOI: 10.15251/JOR.2022.184.61.
F. G. Smith, T. A. King, and D. Wilkins, Optics and Photonics: An Introduction (England, John Wiley & Sons, 2007).
M. Semtsiv, Ph.D Thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2004.
J. Nanda, P. K. Mahapatra, and C. L. Roy, Phys. B Conden. Mat. 383, 232 (2006). DOI: 10.1016/j.physb.2006.03.021.
A. Talhi, K. Bouzidi, A. Belghachi, and M. B. Azizi, Third International Conference on Energy, Materials, Applied Energetics and Pollution (Constantine, Algeria ICEMAEP, 2016). p. 574.
A. Abolghasemi and R. Kohandani, Appl. Opt. 57, 7045 (2018). DOI: 10.1364/AO.57.007045.
P. Panchadhyayee, R. Biswas, A. Khan, and P. K. Mahapatra, J. Phys. Conden. Mat. 20, 275243 (2008). DOI: 10.1088/0953-8984/20/27/275243.
E. I. Vasilkova, E. V. Pirogov, M. S. Sobolev, A. I. Baranov, A. S. Gudovskikh, R. A. Khabibullin, and A. D. Bouravleuv, Phys. Scrip. 99, 025951 (2024). DOI: 10.1088/1402-4896/ad1cbb.
L. Esaki, IEEE J. Quant. Elect. 22, 1611 (1986). DOI: 10.1109/JQE.1986.1073162.
D. Mukherji and B. R. Nag, Phys. Rev. B 12, 4338 (1975). DOI: 10.1103/PhysRevB.12.4338.
J. W. Lee and M. A. Reed, J. Vacu. Sci. Tech. B Microelect. Proce. Phenom. 5, 771 (1987). DOI: 10.1116/1.583745.
Y. Mao, X. X. Liang, G. J. Zhao, and T. L. Song, Journal of Physics: Conference Series (Prague, Czech Republic 2014). p. 012172.
W. L. Bloss, Phys. Rev. B 44, 8035 (1991). DOI: 10.1103/PhysRevB.44.8035.
I. B. Spielman, Ph.D Thesis, California Institute of Technology, 2004.
P. Keshagupta, Sci. Tech. Asia 2, 75 (2015).
C. Pacher, W. Boxleitner, and E. Gornik, Phys. Rev. B 71, 125317 (2005).DOI: 10.1103/PhysRevB.71.125317.
M. Shen and W. Cao, Mat. Sci. Eng. B 103, 122 (2003). DOI: 10.1016/S0921-5107(03)00159-4.
S. E. Lyshevski, Nano and Molecular Electronics Handbook (Boca Raton, CRC Press, 2018).
B. Jonsson and S. T. Eng, IEEE J. Quant. Elect. 26, 2025 (1990). DOI: 10.1109/3.62122.
A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, IEEE J. Quant. Elect. 24, 1524 (1988). DOI: 10.1109/3.7079.
S. S. Allen and S. L. Richardson, Phys. Rev. B 50, 11693 (1994). DOI: 10.1103/PhysRevB.50.11693.
S. Shrestha, N. Bhusal, S. Byahut, and C. K. Sarkar, BIBECHANA 18, 91 (2021).DOI: 10.3126/bibechana.v18i1.27450.
J. W. Choe, H. J. Hwang, A. G. U. Perera, S. G. Matsik, and M. H. Francombe, J. Appl. Phys. 79, 7510 (1996). DOI: 10.1063/1.362422.
M. Vasconcelos, E. Albuquerque, and A. Mariz, J. Phys. Conden. Mat. 10, 5839 (1998). DOI: 10.1088/0953-8984/10/26/012.
J. P. Sun, G. I. Haddad, P. Mazumder, and J. N. Schulman, Proce. IEEE 86, 641 (1998). DOI: 10.1109/5.663541.
R. F. Jao and J. Z. Lai, Journal of Physics: Conference Series (IOP Publishing, 2023). p. 012039.