Calculation of Plasma Parameters for (Cu1-X:Alx) Prepared by Laser-Induced Plasma: Influence Laser Energies
Main Article Content
Abstract
In this work, the correlation between plasma parameters induced by pulsed laser from copper-aluminium (Cu1-x:Alx) targets at varying ratios x = 0.3, 0.5, and 0.7 and the characteristics of the ablated nanoparticles is studied, is investigated. The results show an increase in electron number density (ne) and plasma temperature (Te) with increasing pulsed laser energy and target ratio. The crystallite size of Cu and Al in the composite nanoparticles increased with plasma temperature from 12.4 to 17.4 nm, 13.7 to 19.1 nm, and 13.4 to 21.0 nm for Al crystallite, while it increased from 19.8 to 29.1 nm, 15.3 to 23.3 nm, and 12.3 to 18.6 nm for Cu crystallite in the x=0.3, 0.5, 0.7. The higher Te means more energy is transferred to the plasma, which enhances the ablation process. Increasing Te significantly increased the crystallite size of the generated nanoparticles, especially at the highest temperature. The created seed particles inside plasma may be heated by collisions with electrons, which act as a heating source during the growth of the clusters, enhancing crystallization. The crystallite size of Cu is more significant than that of Al at all laser energies for the targets from Cu0.7:Al0.3 and Cu0.5:Al0.5, and is opposite at the Cu0.3:Al0.7 sample. The difference in crystallite size between the two elements in the composite nanoparticles depends on their presence in the target and the pulsed laser energy, resulting from the differing capabilities of laser interaction with the other elements.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. R.S. Mohammed, K.A. Aadim, and K.A. Ahmed. Karbala Int. J. Mod. Sci. 8(2), 88–97 (2022). https://doi.org/ 10.33640/2405-609X.3225.
2. V. Unnikrishnan, K. Alti, V. Kartha, C. Santhosh, G. Gupta, and B. Suri. Pramana - J. Phys. 74, 983 (2010). https:// 10.1007/s12043-010-0089-5.
3. R.J.E. Jaspers. Fusion Sci. Technol. 61, 384 (2012). https://doi.org/ 10.33640/2405-609X.3225.
4. A. Ajith, M.N.S. Swapna, H. Cabrera, and S.I. Sankararaman. Photonics. 10, (2023). https://doi.org/ 10.3390/photonics10020199 .
5. S.T. Hsieh, H. Mishra, N. Bolouki, W. Wu, C. Li, and J.-H. Hsieh. Coatings. 12, 1014 (2022). https:// 10.3390/coatings12071014..
6. K.A. Aadim, A.A. Hussain, and M.R. Abdulameer. Iraqi J. Phys. 12, 97 (2014). https://doi.org/10.30723/ijp.v12i23.344.
7. A. Sergievskaya, A. O’Reilly, A. Chauvin, J. Veselý, A. Panepinto, J. De Winter, D. Cornil, J. Cornil, and S. Konstantinidis. Colloids Surfaces A Physicochem. Eng. Asp. 615, 126286 (2021). https://doi.org/ 10.1016/j.colsurfa.2021.126286.
8. S.Z. Wu. J. Appl. Phys. 98(8) (2005). https://doi.org/10.1063/1.2112177.
9. A. Ojeda-G-P, M. Döbeli, and T. Lippert. Adv. Mater. Interfaces. 5, 1 (2018). https:// 10.1002/admi.201701062
10. M. Šícha, Z. Hubicka, L. Soukup, L. Jastrabík, M. Cada, and P. Špatenka. Surf. Coatings Technol. 148, 199 (2001). https:// 10.1016/S0257-8972(01)01338-X.
11. R.K. Jamal, K.A. Aadim, Q.G. Al-Zaidi, and I.N. Taaban. Photonic Sensors. 5, 235 (2015). https://doi.org/10.1007/s13320-015-0253-0.
12. Online Available- http://kinetics.nist.gov/index.php. (2025). https:// doi.org/kinetics.nist.gov/index.php.
13. K.A. Aadim, and R.H. Jassim. AIP Conf. Proc. 2372, 080014 (2021). https://doi.org/10.1063/5.0067300.
14. Bolouki, Hsieh, Li, and Yang. Plasma. 2, 283 (2019). https://doi.org/10.3390/plasma2030020.
15. R. Wang, C. Yang, J. Hao, J. Shi, F. Yan, N. Zhang, B. Jiang, and W. Shao. Coatings. 12, 394 (2022). https://doi.org/10.3390/coatings12030394.
16. M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker. Appl. Phys. A Mater. Sci. Process. 68, 387 (1999). https://doi.org/10.1007/s003399900011.
17. A. Kiejna, and K.F. Wojciechowski. [Internet]. In: Metal Surface Electron Physics, Elsevier, 123 (1996). https://doi.org/10.1016/B978-008042675-4/50009-8.
18. M.T. Hussein, K.A. Aadim, and E.K. Hassan. Adv. Mater. Phys. Chem. 06, 85 (2016). https://doi.org/ 10.4236/ampc.2016.64009.
19. A. Alwen, and A.M. Hodge. Mater. Res. Express. 10, 016402 (2023). https://doi.org/10.1088/2053-1591/acb31a.
20. J.-X. Zhang, and Z.-Y. Zhao. Mater. Sci. Semicond. Process. 167, 107819 (2023). https://doi.org/10.1016/j.mssp.2023.107819.
21. R. Bo, N. Nasiri, H. Chen, D. Caputo, L. Fu, and A. Tricoli. ACS Appl. Mater. Interfaces. 9, 2606 (2017). https://doi.org/10.1021/acsami.6b12321.
22. H.J. Imran, K.A. Hubeatir, K.A. Aadim, and D.S. Abd. J. Phys. Conf. Ser. 1818, (2021). https://doi.org/10.1088/1742-6596/1818/1/012127.
23. 24. N. Hellgren, K. Macák, E. Broitman, M.P. Johansson, L. Hultman, and J.E. Sundgren. J. Appl. Phys. 88, 524 (2000). https://doi.org/10.1063/1.373690.
25. F. Taccogna, M. Dell’Aglio, M. Rutigliano, G. Valenza, and A. De Giacomo. Plasma Sources Sci. Technol. 26, 045002 (2017). https://doi.org/10.1088/1361-6595/aa595b.