Calculation of Plasma Parameters for (Cu1-X:Alx) Prepared by Laser-Induced Plasma: Influence Laser Energies

Main Article Content

Kadhim A. Aadim
Nawfal A. Noori
Salam A. Mohammed

Abstract

In this work, the correlation between plasma parameters induced by pulsed laser from copper-aluminium (Cu1-x:Alx) targets at varying ratios x = 0.3, 0.5, and 0.7 and the characteristics of the ablated nanoparticles is studied, is investigated. The results show an increase in electron number density (ne) and plasma temperature (Te) with increasing pulsed laser energy and target ratio. The crystallite size of Cu and Al in the composite nanoparticles increased with plasma temperature from 12.4 to 17.4 nm, 13.7 to 19.1 nm, and 13.4 to 21.0 nm for Al crystallite, while it increased from 19.8 to 29.1 nm, 15.3 to 23.3 nm, and 12.3 to 18.6 nm for Cu crystallite in the x=0.3, 0.5, 0.7. The higher Te means more energy is transferred to the plasma, which enhances the ablation process. Increasing Te significantly increased the crystallite size of the generated nanoparticles, especially at the highest temperature. The created seed particles inside plasma may be heated by collisions with electrons, which act as a heating source during the growth of the clusters, enhancing crystallization. The crystallite size of Cu is more significant than that of Al at all laser energies for the targets from Cu0.7:Al0.3 and Cu0.5:Al0.5, and is opposite at the Cu0.3:Al0.7 sample. The difference in crystallite size between the two elements in the composite nanoparticles depends on their presence in the target and the pulsed laser energy, resulting from the differing capabilities of laser interaction with the other elements.

Received: Aug. 09, 2025 Revised: Aug. 24, 2025 Accepted Aug. 25, 2025

Article Details

Section

Articles

How to Cite

1.
Aadim KA, Noori NA, Mohammed SA. Calculation of Plasma Parameters for (Cu1-X:Alx) Prepared by Laser-Induced Plasma: Influence Laser Energies. IJP [Internet]. 2025 Sep. 1 [cited 2025 Sep. 1];23(3):114-27. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1510

References

1. R.S. Mohammed, K.A. Aadim, and K.A. Ahmed. Karbala Int. J. Mod. Sci. 8(2), 88–97 (2022). https://doi.org/ 10.33640/2405-609X.3225.

2. V. Unnikrishnan, K. Alti, V. Kartha, C. Santhosh, G. Gupta, and B. Suri. Pramana - J. Phys. 74, 983 (2010). https:// 10.1007/s12043-010-0089-5.

3. R.J.E. Jaspers. Fusion Sci. Technol. 61, 384 (2012). https://doi.org/ 10.33640/2405-609X.3225.

4. A. Ajith, M.N.S. Swapna, H. Cabrera, and S.I. Sankararaman. Photonics. 10, (2023). https://doi.org/ 10.3390/photonics10020199 .

5. S.T. Hsieh, H. Mishra, N. Bolouki, W. Wu, C. Li, and J.-H. Hsieh. Coatings. 12, 1014 (2022). https:// 10.3390/coatings12071014..

6. K.A. Aadim, A.A. Hussain, and M.R. Abdulameer. Iraqi J. Phys. 12, 97 (2014). https://doi.org/10.30723/ijp.v12i23.344.

7. A. Sergievskaya, A. O’Reilly, A. Chauvin, J. Veselý, A. Panepinto, J. De Winter, D. Cornil, J. Cornil, and S. Konstantinidis. Colloids Surfaces A Physicochem. Eng. Asp. 615, 126286 (2021). https://doi.org/ 10.1016/j.colsurfa.2021.126286.

8. S.Z. Wu. J. Appl. Phys. 98(8) (2005). https://doi.org/10.1063/1.2112177.

9. A. Ojeda-G-P, M. Döbeli, and T. Lippert. Adv. Mater. Interfaces. 5, 1 (2018). https:// 10.1002/admi.201701062

10. M. Šícha, Z. Hubicka, L. Soukup, L. Jastrabík, M. Cada, and P. Špatenka. Surf. Coatings Technol. 148, 199 (2001). https:// 10.1016/S0257-8972(01)01338-X.

11. R.K. Jamal, K.A. Aadim, Q.G. Al-Zaidi, and I.N. Taaban. Photonic Sensors. 5, 235 (2015). https://doi.org/10.1007/s13320-015-0253-0.

12. Online Available- http://kinetics.nist.gov/index.php. (2025). https:// doi.org/kinetics.nist.gov/index.php.

13. K.A. Aadim, and R.H. Jassim. AIP Conf. Proc. 2372, 080014 (2021). https://doi.org/10.1063/5.0067300.

14. Bolouki, Hsieh, Li, and Yang. Plasma. 2, 283 (2019). https://doi.org/10.3390/plasma2030020.

15. R. Wang, C. Yang, J. Hao, J. Shi, F. Yan, N. Zhang, B. Jiang, and W. Shao. Coatings. 12, 394 (2022). https://doi.org/10.3390/coatings12030394.

16. M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker. Appl. Phys. A Mater. Sci. Process. 68, 387 (1999). https://doi.org/10.1007/s003399900011.

17. A. Kiejna, and K.F. Wojciechowski. [Internet]. In: Metal Surface Electron Physics, Elsevier, 123 (1996). https://doi.org/10.1016/B978-008042675-4/50009-8.

18. M.T. Hussein, K.A. Aadim, and E.K. Hassan. Adv. Mater. Phys. Chem. 06, 85 (2016). https://doi.org/ 10.4236/ampc.2016.64009.

19. A. Alwen, and A.M. Hodge. Mater. Res. Express. 10, 016402 (2023). https://doi.org/10.1088/2053-1591/acb31a.

20. J.-X. Zhang, and Z.-Y. Zhao. Mater. Sci. Semicond. Process. 167, 107819 (2023). https://doi.org/10.1016/j.mssp.2023.107819.

21. R. Bo, N. Nasiri, H. Chen, D. Caputo, L. Fu, and A. Tricoli. ACS Appl. Mater. Interfaces. 9, 2606 (2017). https://doi.org/10.1021/acsami.6b12321.

22. H.J. Imran, K.A. Hubeatir, K.A. Aadim, and D.S. Abd. J. Phys. Conf. Ser. 1818, (2021). https://doi.org/10.1088/1742-6596/1818/1/012127.

23. 24. N. Hellgren, K. Macák, E. Broitman, M.P. Johansson, L. Hultman, and J.E. Sundgren. J. Appl. Phys. 88, 524 (2000). https://doi.org/10.1063/1.373690.

25. F. Taccogna, M. Dell’Aglio, M. Rutigliano, G. Valenza, and A. De Giacomo. Plasma Sources Sci. Technol. 26, 045002 (2017). https://doi.org/10.1088/1361-6595/aa595b.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>