Sensor Nanochips Based on Single Exciton Quasimolecules

Main Article Content

Serhii Pokutnii

Abstract

A model of the sensor nanochip based on germanium/silicon heterostructures (Ge/Si-heterostructures) with Ge quantum dots is suggested. Two-Quasimolecule Spectrum: Infrared radiation can sense the formation of a single exciton quasimolecule. Optical transitions of this state to higher-lying SIE levels lead to the emission of radiation in the infrared part of the spectrum, with the energy of the emitting radiation being ∼70 meV and its normalized intensity ∼0.11. Such a unique type of infrared light can be considered as a strong signature in detection of single exciton quasimolecules in Ge/Si heterostructures. The sensor nanochip model to be proposed would should lay the foundation for both the fundamentals and applications, and the process could lead to the next generation of high-efficient sensor nanochip. Its successful fabrication would open a way for high performance exciton optoelectronic devices, highly sensitive, miniaturized, and CMOS-based infrared detectors for the biomedical, environmental and communication applications.

Received:May, 03,2025 Revised: Aug. 19, 2025 Accepted:Aug.19, 2025  

Article Details

Section

Articles

How to Cite

1.
Pokutnii S. Sensor Nanochips Based on Single Exciton Quasimolecules. IJP [Internet]. 2025 Sep. 1 [cited 2025 Sep. 1];23(3):1-7. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1476

References

1. B. Vercelli, Nanomaterials 14(20), 1652 (2024). https://doi.org/10.3390/nano14201652.

2. L.R. Adil, R. Parui, M. N. Khatun, M. A. Chanu, L. Li, Li. Lidong, Shu. Wang, and K. Iyer Parameswar, In Advanced Nanomaterials for Point of Care Diagnosis and Therapy 121 (2022). https://doi.org/10.1016/B978-0-323-85725-3.00017-9.

3. B. Vercelli, Carbon Quantum Dots: Green Nano-biomaterials in the Future of Biosensing (Azad U. P. Chandra Springer: Singapore, Chapter 14; 283 (2023)): https://doi.org/10.1007/978-981-19-9437-1_14.

4. B. Bartolomei, M. Sbacchi, C. Rosso, A. Günay-Gürer, L. Zdražil, A. Cadranel, S. Kralj, D. M. Guldi, and M. Prato, Angew. Chem. Int. Ed. 63(5), e202316915 (2024). https://doi.org/10.1002/anie.202316915.

5. S. I. Pokutnyi, Low Temp. Phys. 44(8), 819 (2018.). https://doi.org/10.1063/1.5049165.

6. S. I. Pokutnyi, Yu. N. Kulchin, and V. P. Dzyuba, Semiconductors 49(10), 1311 (2015). https://doi.org/10.1134/S1063782615100218.

7. S. I. Pokutnyi, Yu. N. Kulchin, V. P. Dzyuba, and A. V Amosov, Journal of Nanophotonics 10(3), 036008 (2016). https://doi.org/10.1117/1.JNP.10.036008.

8. S. I. Pokutnyi, Physica B: Physics of Condensed Matter 616, 413059 (2021). https://doi.org/10.1016/j.physb.2021.413059.

9. S. I. Pokutnyi, Physics of the Solid State 39(4), 634 (1997). https://doi.org/10.1134/1.1129943.

10. A. I. Yakimov, A. V. Dvurechensky, and A. I. Nikiforov, J. Exp. Theor. Phys. Lett. 73, 529 (2001). https://doi.org/10.1134/1.1387520.

11. A. I. Yakimov, A. V. Dvurechensky, and A. I. Nikiforov, J. Exp. Theor. Phys. 92, 500 (2001). https://doi.org/10.1134/1.1364747.

12. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, P. A. Kuchinskaya, and A. V. Dvurechenskii, Appl. Phys. Lett. 106, 032104 (2015). https://doi.org/10.1063/1.4906522.

13. S. I. Pokutnyi, Optical Eng. 56(6), 067104 (2017). https://doi.org/10.1117/1.OE.56.6.067104.

Similar Articles

You may also start an advanced similarity search for this article.