Influence of A.C. Frequency on Hollow Magnetron Sputtering Discharge Parameters
Main Article Content
Abstract
In the present work, optical emission spectroscopy was used to diagnose the influence of A.C. power source frequency on the hollow magnetron sputtering discharge parameters (such as discharge emission, discharge current and voltage, glow discharge structure, temperature (Te) and electron number density (ne), Debye length (λD), and plasma parameter (ND) of constant pressure. The electron temperature and number density were determined using the Boltzmann plots and the Stark broadening methods, respectively. The results illustrate that the normal glow discharge structure is similar to the D.C. discharge mode. The magnetic field has no impact on the fundamental discharge parameter in both A.C. frequencies under study. On the other hand, the other discharge parameters (Te, ne, λD and ND) increase with increasing the magnetic field in both discharge frequencies. In addition, the increase in the frequency of the A.C. source current led to an increase in the discharge intensity emission and the other discharge parameters being studied. In this case, in frequency 7 kHz, Te surged from 0.685 eV to 0.839 eV, and ne experienced an increase from 3.088 x 1018 m-3 to 4.902 x 1018 m-3. At a frequency of 9 kHz, the electron temperature surged from 0.711eV to 0.911 eV. ne experienced an increase from 3.615 x 1018 m-3 to 6.749 x 1018 m-3.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
A. Palmero, N. Tomozeiu, A. M. Vredenberg, W. Arnoldbik, and F. Habraken, Surf. Coat. Tech. 177, 215 (2004).
J. Musil and J. Vlček, Mat. Chem. Phys. 54, 116 (1998).
M. Benda and J. Musil, Vacuum 55, 171 (1999).
G. Bleykher, V. Krivobokov, A. Yurjeva, and I. Sadykova, Vacuum 124, 11 (2016).
S. D. Ekpe, F. J. Jimenez, D. J. Field, M. J. Davis, and S. K. Dew, J. Vacu. Sci. Tech. A 27, 1275 (2009).
M. Hassouba, Eur. Phys. J. Appl. Phys. 14, 131 (2001).
N. Tomozeiu, E. Van Faassen, A. Palmero, W. Arnoldbik, A. Vredenberg, and F. Habraken, Thin Sol. Fil. 447, 306 (2004).
Y. Huttel, Gas-Phase Synthesis of Nanoparticles (Weinheim, Germany, John Wiley & Sons, 2017).
J. P. Squire, C. S. Olsen, F. Chang Díaz, L. D. Cassady, B. W. Longmier, M. G. Ballenger, M. D. Carter, T. W. Glover, G. E. Mccaskill, and E. Bering Iii, 32nd International Electric Propulsion Conference (Wiesbaden, Germany IEPC, 2011). p. 11.
X. Ma, T. Furukawa, Y. Oshio, and H. Nishida, AIAA Propulsion and Energy 2020 Forum (Japan ARC, 2020). p. 3629.
P. Kelly, P. Henderson, R. Arnell, G. Roche, and D. Carter, J. Vac. Sci. Tech. A: Vac. Sur. Fil. 18, 2890 (2000).
M. Åstrand, T. Selinder, F. Fietzke, and H. Klostermann, Sur. Coat. Tech. 188, 186 (2004).
A. K. Bard and Q. A. Abbas, Optik 272, 170346 (2023).
M. M. Kadhim and Q. A. Abbas, Iraqi J. Sci. 63, 4254 (2022).
N. Idris, T. Usmawanda, K. Lahna, and M. Ramli, Journal of Physics: Conference Series (Medan, Indonesia IOP Publishing, 2018). p. 012098.
Q. A. Abbas, A. F. Ahmed, and F. a.-H. Mutlak, Optik 242, 167260 (2021).
M. M. Shehab and K. A. Aadim, Iraqi J. Sci. 62, 2948 (2021).
H. Akatsuka, Advan. Phys. X 4, 1592707 (2019).
H. R. Humud, Iraqi J. Phys. 15, 142 (2017).
U. S. Inan and M. Gołkowski, Principles of Plasma Physics for Engineers and Scientists (Cambridge, UK, Cambridge University Press, 2010).
I. K. Abbas and K. A. Aadim, Iraqi J. Sci. 64, 2271 (2023).
M. M. Kadhim and Q. A. Abbas, AIP Conference Proceedings (Dubai, United Arab Emirates AIP Publishing, 2021). p. 130024.
S. Waheed, S. Bashir, A. Dawood, S. Anjum, M. Akram, A. Hayat, S. Amin, and A. Zaheer, Optik 140, 536 (2017).
S. M. Fathi and S. J. Kadhim, Iraqi J. Sci. 63, 163 (2022).
N. K. Hussein and S. Kadhem, Iraqi J. Sci. 63, 2492 (2022).
Q. A. Abbas, Iraqi J. Phys. 17, 59 (2019).
M. J. Ketan and K. A. Aadim, Iraqi J. Sci. 64, 188 (2023).
A. F. Ahmed and A. A. Yousef, Iraqi J. Sci. 62, 3560 (2021).
Q. A. Abbas, Iraqi J. Sci. 62, 4694 (2021).
M. Fikry, W. Tawfik, and M. M. Omar, Optic. Quant. Elect. 52, 1 (2020).
S. F. Khaleel and Q. A. Abbas, Iraqi J. Sci. 63, 2470 (2022).
R. N. Muhsin and K. A. Aadim, Iraqi J. Phys. 17, 96 (2019).
S. E. Abdulghani and Q. A. Abbas, Iraqi J. Sci. 63, 2945 (2022).
A. K. Bard and Q. A. Abbas, Iraqi J. Sci. 63, 3412 (2022).
A. K. Abbas, K. A. Aadim, and M. F. Jawaad, AIP Conference Proceedings (Dubai, United Arab Emirates AIP Publishing, 2021). p. 080013.
H. I. Hussein and K. A. Aadim, Iraqi J. Sci. 63, 971 (2022).
M. A. Essa and K. A. Aadim, Iraqi J. Phys. 17, 125 (2019).
R. K. Hassan, M. A. Aswad, and R. K. Hassan, Indian J. Nat. Sci. 10, 17908 (2019).
I. K. Abbas, Sci. Tech. Indonesia 7, 508 (2022).
K. A. Aadim, Iraqi J. Phys. 15, 65 (2017).
A. Alberti, A. Munafò, M. Koll, M. Nishihara, C. Pantano, J. B. Freund, G. S. Elliott, and M. Panesi, J. Phys. D: Appl. Phys. 53, 025201 (2019).
K. A. Aadim, A. A. Hussain, and W. I. Yaseen, Iraqi J. Phys. 13, 76 (2015).
A. K. Bard and Q. A. Abbas, Indian J. Nat. Sci. 10, 17908 (2022).
A. F. Ahmed, M. R. Abdulameer, M. M. Kadhim, and F. a.-H. Mutlak, Optik 249, 168260 (2022).
M. B. Paul, Fundamentals of Plasma Physics (Cambridge, U.K., New York, Cambridge University Press, 2006).
M. M. Kadhim, T. H. Khalaf, and Q. A. Abbas, Iraqi J. Sci. 63, 4771 (2022).
R. S. Mohammed, K. A. Aadim, and K. A. Ahmed, Iraqi J. Sci. 63, 3711 (2022).
M. A. Khalaf, B. M. Ahmed, and K. A. Aadim, Iraqi J. Sci. 61, 1665 (2020).
K. A. Aadim, Iraqi J. Phys. 16, 1 (2018).
M. A. Mohammed, H. N. Hashim, and K. A. Aadim, J. Opt., (2023).
K. B. Alaa and A. A. Qusay, European Schol. J. 3, 1 (2022).
A. Kramida, Y. Ralchenko, and J. Reader. NIST Atomic Spectra Database (version 5.10); https://www.nist.gov/pml/atomic-spectra-database.