Structural, Electronic, and Optical Properties of HgSe Monolayer: Density Functional Theory Calculations

Main Article Content

Aqeel M. Ali
https://orcid.org/0000-0002-8571-1367
Mohanned J. Mohammed

Abstract

To investigate the structural, electrical, and optical properties of a single layer of two-dimensional mercury selenide (HgSe), density functional theory is used for the analysis of the material. To ensure the monolayer's structural and thermal stability, it is of the utmost importance to ascertain the phonon frequency. Computer simulations based on first principles were used in order to investigate the structural lattice parameter, which is in good agreement with experimental results. The two-dimensional HgSe is dynamically stable according to the positive phonon frequencies. The 2D-HgSe has the semiconductor characteristic of a direct band gap of about 1.731 eV, located at the Γ point. The static dielectric constant is 1.34 for a semiconductor characteristic. The HgSe monolayer is a transparent material with a static refractive index of 1.16, besides an anti-reflective characteristic. The refractive index had a lowest value of 0.76 at high energy. 2D-HgSe has a UV optical absorption characteristic.

Received: Jan.04, 2024 Revised: Mar. 17, 2025 Accepted:Apr. 07, 2025

Article Details

Section

Articles

How to Cite

1.
Ali AM, Mohammed MJ. Structural, Electronic, and Optical Properties of HgSe Monolayer: Density Functional Theory Calculations. IJP [Internet]. 2025 Sep. 1 [cited 2025 Sep. 1];23(3):40-9. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1416

References

1. N. Shukla and G. A. Ahmed, Mater. Today: Proce., 45, 4819 (2021). https://10.1016/j.matpr.2021.01.293.

2. Y. Yin, Y. Gao, L. Zhang, Y. Zhang, and S. Du, Sci. China Mater., 67, 1202 (2024). https://10.1007/s40843-023-2846-5.

3. T. Olsen, E. Andersen, T. Okugawa, D. Torelli, T. Deilmann, and K. S. Thygesen, Phys. Rev. Materials, 3, 024005 (2019). https://10.1103/PhysRevMaterials.3.024005.

4. A. Bafekry, M. Faraji, S. Hasan Khan, M. M. Fadlallah, H. R. Jappor, B. Shokri, M. Ghergherehchi, and G. S. Chang, Scientific Reports., 14, 12695 (2024). https://10.1038/s41598-024-63580-0.

5. A. Bafekry, S. Karabsizadeh, M. Faraji, H. R. Jappor, A. A. Ziabari, M. M. Fadlallah, M. Ghergherehchi, and G. S. Chang, Adv. Theo. Simulation., 7, 2400438 (2024). https://10.1002/adts202400438.

6. A. Bafekry, M. M. Fadlallah, M. Faraji, S. Hasan Khan, H. R. Jappor, B. Shokri, M. Ghergherehchi, and G. S. Chang, Phys. Chem. Chem. Phys., 26, 11056 (2024). https://10.1039/D3CP05360A.

7. A. Bafekry, B. Mortazavi, M. Faraji, M. Shahrokhi, A. Shafique, H. R. Jappor, C. Nguyen, M. Ghergherehchi, and S. A. H. Feghhi, Scientific Reports., 11, 10366 (2021). https://10.1038/s41598-021-89944-4.

8. H. R. Jappor, A. O. M. Almayyali, H. A. Mezher, S. Al-Qaisi, S. Bin-Omran, and R Khenata, Surf. Interfaces, 54, 105261 (2024). https://10.1016/j.surfin-2024-105261.

9. R. Meng, L. M. C. Pereira, J. V. Vondel, J. W. Seo, J. Locquet, and M. Houssa, ACS Omega., 9, 31890 (2024). https://10.1021/acsomega.4c03502.

10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov., Science, 306 (2004). https://10.1126/science.1102896.

11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438 (2005). https://10.1038/nature04233.

12. A. M. Ali, Iraqi J. Sci., 62, 12 (2021). https://10.24996/ijs.2021.62.12.9.

13. K. Ashutosh, A. Devi, A. Kumar, A. Singh, and R. Adhikari, AIP Conf. Proc., 2995, 020104 (2024). https://10.1063/5.017796.

14. A. M. Ali, Iraqi J. Sci., 64, 1 (2023). https://10.24996/ijs.2023.64.1.20.

15. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K Geim, Rev. Mod. Phys., 81 (2009). https://10.1103/RevModPhys.81.109.

16. A. M. Ali, J. Kufa-Phys., 11, 2 (2019). https://10.31257/JKP/2019/110209.

17. T. Vishal, K. Narender, B. K. Rao, M. L. Verma, H. D. Sahu; V. Swati, and C. Anil Kumar, Phys. E: Low-dimen. Syst. Nanostruc., 133 (2021). https://10.1016/j.physe.2021.114812.

18. B. Chettri, P. K. Patra, M. Lalmuanchhana, S. Verma, B. K. Rao,M. L. Verma, V. Thakur, N. Kumar, N.N. Hieu, and D.P. Rai, Inter. J. Quan. Chem., (2021). https://10.1002/qua.26680.

19. N. H. Malik, Q. Rafiq, M. F. Nasir, S. Azam, M. T. Khan, G. A. M. Mersal, and M. M. Hessien, Inter. J. Quan. Chem., (2024). https://10.1002/qua.27486.

20. S. K. Matta, C. Tang, A. P. OMullane, A. Du, and S. P. Russo, ACS App. Nano Mater. 5, 10 (2022). https://10.1021/acsanm.2c02812.

21. K. R. Abidi and P. Koskinen, Phys. Rev. Mater., 6, 124004 (2022). https://10.1103/PhysRevMaterials.6.124004.

22. N. Habibes, A. Boukortt, S. Meskine, A. Benbedra, Y. Mamouni, and H. Bennacer, J. Sol. State Sci. Tech., 13, 013013 (2024). DOI:10.11492162-8777/ad1f8f.

23. G. Korotcenkov, Hg-based narrow bandgap II-VI semiconductors Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors, (Springer, Cham.,2023). https://10.1007/978-3-031-20510-1.

24. M. Debbarma, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, and S. Chattopadhyaya, J. Phys. Chem. Sol., 131, 86 (2019). https://10.1016/j.jpcs.2019.03.009.

25. J. Li, C. He, L. Meng, H. Xiao, C. Tang, X. Wei, J. Kim, N. Kioussis, G. M. Stocks, and J. Zhong, Nature: Sci. Rep., 5, 14115 (2015). https://10.1016/j.jpcs.2019.03.009.

26. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, “First principles methods using CASTEP,” Zeitschrift für kristallographie-crystalline materials, 220 5-6 (2005). https://10.1524/zkri.220.5.567.65075.

27. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. let., 100, 136406 (2008). https://10.1103/PhysRevLett.100.136406.

28. S. Smiga and L. A. Constantin, The J. Phys. Chem., A 124, 27 (2020). https://10.1021/acs.jpca.0c04156.

29. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phis. Rev., B 80, 155453 (2009). https://10.1103/PhysRevB.80.155453.

30. K. U. Gawlik, L. Kipp, and M. Skibowski, Phys. Rev. Lett., 78, 16 (1997). https://10.1103/PhysRevLett.78.3165.

31. S. Li, W. Ji, C. Zhang, P. Li, and P. Wang, J. Mater. Chem., C 4 (2016). https://10.1039/c6tc00020g.

Similar Articles

You may also start an advanced similarity search for this article.