Flexible Near-Infrared Photodetector with High Sensitivity Using SnS Thin Film Deposited by Chemical Bath Method
Main Article Content
Abstract
The sensitivity of the photodetector is a crucial parameter when evaluating the performance of a cubic structure-based tin mono-sulfide (SnS) photodetector. However, achieving high sensitivity with a low-cost deposition technique for the SnS photodetector, which is based on a film grown on a flexible substrate, has been challenging. The primary aim of the present research is to fabricate a photodetector with higher sensitivity based on SnS thin film. The film was deposited onto a flexible polyester substrate utilizing a cheap and simple chemical bath deposition (CBD) method under 80 °C, pH 7.4, and 2.5 hours. The X-ray diffraction analysis showed that the film is made up of many small crystals and has a cubic shape, with an energy gap value of 1.56 eV. The photo-response properties were conducted upon illumination of near-infrared (NIR) 750 nm. The findings demonstrated that the photodetector has excellent stability and photo-response characteristics, involving a sensitivity of 1775, a rise time of 0.72 s, and a recovery time of 0.68 s. The fabricated flexible photodetector shows outstanding promise due to its excellent performance, cost-effectiveness, flexibility, and non-toxicity.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. C. Wu, K. Yao, Y. Guan, O. A. Ali, M. Cao, J. Huang, J. Lai, W. Shi, G. Hu, L. Wang, and Y. Shen, Mat. Sci. Semicond. Proce. 93, 208 (2019). https://doi.org/10.1016/j.mssp.2019.01.008.
2. M. S. Mahdi, K. Ibrahim, A. Hmood, N. M. Ahmed, F. I. Mustafa, and S. A. Azzez, Mat. Lett. 200, 10 (2017). https://doi.org/10.1016/j.matlet.2017.04.077.
3. G. S. Muhammed, M. M. Abdullah, and A. M. A. Al-Sammarraie Asian J. Chem. 30, 1374 (2018). https://doi.org/10.14233/ajchem.2018.21262.
4. J. B. Johnson, H. Jones, B. S. Latham, J. D. Parker, R. D. Engelken, and C. Barber, Semicond. Sci. Technol. 14, 501 (1999). https://doi.org/10.1088/0268-1242/14/6/303.
5. A. M. Kadim and W. R. Saleh, Iraqi J. Sci. 58, 1207 (2017). https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/5844.
6. C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 6750 (2011). https://doi.org/10.1016/j.apsusc.2011.02.116.
7. N. Koteeswara Reddy, M. Devika, and E. S. R. Gopal, Crit. Rev. Sol. Stat. Mat. Sci. 40, 359 (2015). https://doi.org/10.1080/10408436.2015.1053601.
8. A. Tanusevski, Semicond. Sci. Technol. 18, 501 (2003). https://doi.org/10.1088/0268-1242/18/6/318.
9. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, Appl. Surf. Sci. 257, 1189 (2010). https://doi.org/10.1016/j.apsusc.2010.07.104.
10. E. Turan, M. Kul, A. S. Aybek, and M. Zor, J. Phys. D Appl. Phys. 42, 245408 (2009). https://doi.org/10.1088/0022-3727/42/24/245408.
11. B. A. Tedla, Neuro Quantology 20, 6111 (2022). https://doi.org/10.14704/nq.2022.20.6. NQ22616.
12. A. F. Rauuf and K. A. Aadim, Iraqi J. Sci. 64, 2877 (2023). https://doi.org/10.24996/ijs.2023.64.6.18.
13. W. R. Saleh, S. M. Hassan, S. Y. Al-Dabagh, and M. A. Marwa, Nano Hybr. Compos. 33, 93 (2021). https://doi.org/10.4028/www.scientific.net/NHC.33.93.
14. M. Ichimura, K. Takeuchi, Y. Ono, and E. Arai, Thin Sol. Fil. 361-362, 98 (2000). https://doi.org/10.1016/S0040-6090(99)00798-1.
15. 15. M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, A. Tiburcio-Silver, and M. E. Calixto, Thin Sol. Fil. 517, 2497 (2009). https://doi.org/10.1016/j.tsf.2008.11.026.
16. A. Ortiz, J. C. Alonso, M. Garcia, and J. Toriz, Semicond. Sci. Technol. 11, 243 (1996). https://doi.org/10.1088/0268-1242/11/2/017.
17. T. S. Reddy and M. C. S. Kumar, RSC Adv. 6, 95680 (2016). https://doi.org/10.1039/C6RA20129F.
18. M. Cao, C. Wu, K. Yao, J. Jing, J. Huang, M. Cao, J. Zhang, J. Lai, O. Ali, L. Wang, and Y. Shen, Mat. Res. Bullet. 104, 244 (2018). https://doi.org/10.1016/j.materresbull.2018.03.039.
19. M. S. Mahdi, A. Hmood, K. Ibrahim, N. M. Ahmed, and M. Bououdina, Superlatt. Microstruct. 128, 170 (2019). https://doi.org/10.1016/j.spmi.2019.01.031.
20. D. Alagarasan, S. S. Hegde, S. Varadharajaperumal, R. Aadhavan, R. Naik, M. Shkir, H. Algarni, and R. Ganesan, Phys. Scr. 97, 065814 (2022). https://doi.org/10.1088/1402-4896/ac6d19.
21. R. Balakarthikeyan, A. Santhanam, A. Khan, A. M. El-Toni, A. A. Ansari, A. Imran, M. Shkir, and S. Alfaify, Optik 244, 167460 (2021). https://doi.org/10.1016/j.ijleo.2021.167460.
22. M. S. Mahdi, K. Ibrahim, N. M. Ahmed, A. Hmood, and S. A. Azzez, Sol. Stat. Phenom. 290, 220 (2019). https://doi.org/10.4028/www.scientific.net/ssp.290.220.
23. M. S. Mahdi, K. Ibrahim, N. M. Ahmed, A. Hmood, S. A. Azzez, F. I. Mustafa, and M. Bououdina, Mat. Lett. 210, 279 (2018). https://doi.org/10.1016/j.matlet.2017.09.049.
24. Khan, N., Javed, A., Bashir, M., & Bashir, S., Results in Optics. 14, 100610 (2024). https://doi.org/10.1016/j.rio.2024.100610.
25. Harshal V Barkale, Aditya Narayn, Gowtham Polumati, Parikshit Sahatiya, Nilanjan Dey, ACS Applied Electronic Materials, 7, 6440 (2024). https://doi.org/10.1021/acsaelm.5c00710.
26. R. E. Abutbul, A. R. Garcia-Angelmo, Z. Burshtein, M. T. S. Nair, P. K. Nair, and Y. Golan, CrystEngComm 18, 5188 (2016). https://doi.org/10.1039/C6CE00647G.
27. R. E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, and Y. Golan, RSC Adv. 6, 5848 (2016). https://doi.org/10.1039/C5RA23092F.
28. P. M. B. Devi, G. P. Reddy, and K. T. R. Reddy, J. Semicond. 40, 052101 (2019). https://doi.org/10.1088/1674-4926/40/5/052101.
29. M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, Opt. Laser Tech. 35, 523 (2003). https://doi.org/10.1016/S0030-3992(03)00068-9.
30. F. Gode, E. Guneri, and O. Baglayan, Appl. Surf. Sci. 318, 227 (2014). https://doi.org/10.1016/j.apsusc.2014.04.128.
31. A. R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Álvarez, O. Gomez-Daza, M. T. S. Nair, and P. K. Nair, Phys. Stat. Sol. A 212, 2332 (2015). https://doi.org/10.1002/pssa.201532405.
32. S. John, M. Francis, R. M. Ap, and V. Geetha, Indian J. Pure Appl. Phys. 61, 326 (2023). https://doi.org/10.56042/ijpap.v61i5.70933.
33. D. Li, L. Dai, X. Ren, F. Ji, Q. Sun, Y. Zhang, and L. Ci, Energy Environ. Sci.,14, 424 (2021). https://doi.org/10.1039/D0EE02919J.
34. S. Suresh, J. Cryst. Proces. Tech. 3, 5 (2013). https://doi.org/10.4236/jcpt.2013.33014.
35. B. Aghili, S. Rahbarpour, M. Berahman, and A. Horri, J. Phys. Chem. C 128, 8077 (2024). https://doi.org/10.1021/acs.jpcc.4c01068.
36. M. S. Nithyapriya, S. Athithya, S. M. Mariappan, S. Harish, M. Navaneethan, and J. Archana, Emergent. Mat. 7, 867 (2024). https://doi.org/10.1007/s42247-023-00618-5.
37. Jadhav, C. D., Patil, G. P., Amar, M., Lyssenko, S., & Minnes, R., Journal of Power. 623, 235496 (2024). https://doi.org/10.1016/j.jpowsour.2024.235496.
38. A. Parbatani, E. S. Song, F. Yang, and B. Yu, Nanoscale 10, 15003 (2018). https://doi.org/10.1039/C8NR04047H.
39. M. S. Mahdi, K. H. Latif, A. A. Jabor, K. Ibrahim, N. M. Ahmed, A. Hmood, F. I. Mustafa, and M. Bououdina, J. Elect. Mat. 49, 5824 (2020). https://doi.org/10.1007/s11664-020-08367-5.
40. K. M. Gupta and N. Gupta, Advanced Semiconducting Materials and Devices (Cham, Springer, 2016).