Flexible Near-Infrared Photodetector with High Sensitivity Using SnS Thin Film Deposited by Chemical Bath Method

Main Article Content

Noor. M. Ibrahim
https://orcid.org/0009-0001-9464-0054
Manal M. Abdullah
Mohamed S. Mahdi
https://orcid.org/0000-0001-7434-7830

Abstract

The sensitivity of the photodetector is a crucial parameter when evaluating the performance of a cubic structure-based tin mono-sulfide (SnS) photodetector. However, achieving high sensitivity with a low-cost deposition technique for the SnS photodetector, which is based on a film grown on a flexible substrate, has been challenging. The primary aim of the present research is to fabricate a photodetector with higher sensitivity based on SnS thin film. The film was deposited onto a flexible polyester substrate utilizing a cheap and simple chemical bath deposition (CBD) method under 80 °C, pH 7.4, and 2.5 hours. The X-ray diffraction analysis showed that the film is made up of many small crystals and has a cubic shape, with an energy gap value of 1.56 eV. The photo-response properties were conducted upon illumination of near-infrared (NIR) 750 nm. The findings demonstrated that the photodetector has excellent stability and photo-response characteristics, involving a sensitivity of 1775, a rise time of 0.72 s, and a recovery time of 0.68 s. The fabricated flexible photodetector shows outstanding promise due to its excellent performance, cost-effectiveness, flexibility, and non-toxicity.

Received: Jun. 03, 2024 Revised: Dec. 04, 2024 Accepted:Dec. 21, 2024

Article Details

Section

Articles

How to Cite

1.
Ibrahim NM, Abdullah MM, Mahdi MS. Flexible Near-Infrared Photodetector with High Sensitivity Using SnS Thin Film Deposited by Chemical Bath Method. IJP [Internet]. 2025 Sep. 1 [cited 2025 Sep. 1];23(3):86-94. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1304

References

1. C. Wu, K. Yao, Y. Guan, O. A. Ali, M. Cao, J. Huang, J. Lai, W. Shi, G. Hu, L. Wang, and Y. Shen, Mat. Sci. Semicond. Proce. 93, 208 (2019). https://doi.org/10.1016/j.mssp.2019.01.008.

2. M. S. Mahdi, K. Ibrahim, A. Hmood, N. M. Ahmed, F. I. Mustafa, and S. A. Azzez, Mat. Lett. 200, 10 (2017). https://doi.org/10.1016/j.matlet.2017.04.077.

3. G. S. Muhammed, M. M. Abdullah, and A. M. A. Al-Sammarraie Asian J. Chem. 30, 1374 (2018). https://doi.org/10.14233/ajchem.2018.21262.

4. J. B. Johnson, H. Jones, B. S. Latham, J. D. Parker, R. D. Engelken, and C. Barber, Semicond. Sci. Technol. 14, 501 (1999). https://doi.org/10.1088/0268-1242/14/6/303.

5. A. M. Kadim and W. R. Saleh, Iraqi J. Sci. 58, 1207 (2017). https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/5844.

6. C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 6750 (2011). https://doi.org/10.1016/j.apsusc.2011.02.116.

7. N. Koteeswara Reddy, M. Devika, and E. S. R. Gopal, Crit. Rev. Sol. Stat. Mat. Sci. 40, 359 (2015). https://doi.org/10.1080/10408436.2015.1053601.

8. A. Tanusevski, Semicond. Sci. Technol. 18, 501 (2003). https://doi.org/10.1088/0268-1242/18/6/318.

9. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus, Appl. Surf. Sci. 257, 1189 (2010). https://doi.org/10.1016/j.apsusc.2010.07.104.

10. E. Turan, M. Kul, A. S. Aybek, and M. Zor, J. Phys. D Appl. Phys. 42, 245408 (2009). https://doi.org/10.1088/0022-3727/42/24/245408.

11. B. A. Tedla, Neuro Quantology 20, 6111 (2022). https://doi.org/10.14704/nq.2022.20.6. NQ22616.

12. A. F. Rauuf and K. A. Aadim, Iraqi J. Sci. 64, 2877 (2023). https://doi.org/10.24996/ijs.2023.64.6.18.

13. W. R. Saleh, S. M. Hassan, S. Y. Al-Dabagh, and M. A. Marwa, Nano Hybr. Compos. 33, 93 (2021). https://doi.org/10.4028/www.scientific.net/NHC.33.93.

14. M. Ichimura, K. Takeuchi, Y. Ono, and E. Arai, Thin Sol. Fil. 361-362, 98 (2000). https://doi.org/10.1016/S0040-6090(99)00798-1.

15. 15. M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, A. Tiburcio-Silver, and M. E. Calixto, Thin Sol. Fil. 517, 2497 (2009). https://doi.org/10.1016/j.tsf.2008.11.026.

16. A. Ortiz, J. C. Alonso, M. Garcia, and J. Toriz, Semicond. Sci. Technol. 11, 243 (1996). https://doi.org/10.1088/0268-1242/11/2/017.

17. T. S. Reddy and M. C. S. Kumar, RSC Adv. 6, 95680 (2016). https://doi.org/10.1039/C6RA20129F.

18. M. Cao, C. Wu, K. Yao, J. Jing, J. Huang, M. Cao, J. Zhang, J. Lai, O. Ali, L. Wang, and Y. Shen, Mat. Res. Bullet. 104, 244 (2018). https://doi.org/10.1016/j.materresbull.2018.03.039.

19. M. S. Mahdi, A. Hmood, K. Ibrahim, N. M. Ahmed, and M. Bououdina, Superlatt. Microstruct. 128, 170 (2019). https://doi.org/10.1016/j.spmi.2019.01.031.

20. D. Alagarasan, S. S. Hegde, S. Varadharajaperumal, R. Aadhavan, R. Naik, M. Shkir, H. Algarni, and R. Ganesan, Phys. Scr. 97, 065814 (2022). https://doi.org/10.1088/1402-4896/ac6d19.

21. R. Balakarthikeyan, A. Santhanam, A. Khan, A. M. El-Toni, A. A. Ansari, A. Imran, M. Shkir, and S. Alfaify, Optik 244, 167460 (2021). https://doi.org/10.1016/j.ijleo.2021.167460.

22. M. S. Mahdi, K. Ibrahim, N. M. Ahmed, A. Hmood, and S. A. Azzez, Sol. Stat. Phenom. 290, 220 (2019). https://doi.org/10.4028/www.scientific.net/ssp.290.220.

23. M. S. Mahdi, K. Ibrahim, N. M. Ahmed, A. Hmood, S. A. Azzez, F. I. Mustafa, and M. Bououdina, Mat. Lett. 210, 279 (2018). https://doi.org/10.1016/j.matlet.2017.09.049.

24. Khan, N., Javed, A., Bashir, M., & Bashir, S., Results in Optics. 14, 100610 (2024). https://doi.org/10.1016/j.rio.2024.100610.

25. Harshal V Barkale, Aditya Narayn, Gowtham Polumati, Parikshit Sahatiya, Nilanjan Dey, ACS Applied Electronic Materials, 7, 6440 (2024). https://doi.org/10.1021/acsaelm.5c00710.

26. R. E. Abutbul, A. R. Garcia-Angelmo, Z. Burshtein, M. T. S. Nair, P. K. Nair, and Y. Golan, CrystEngComm 18, 5188 (2016). https://doi.org/10.1039/C6CE00647G.

27. R. E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, and Y. Golan, RSC Adv. 6, 5848 (2016). https://doi.org/10.1039/C5RA23092F.

28. P. M. B. Devi, G. P. Reddy, and K. T. R. Reddy, J. Semicond. 40, 052101 (2019). https://doi.org/10.1088/1674-4926/40/5/052101.

29. M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, Opt. Laser Tech. 35, 523 (2003). https://doi.org/10.1016/S0030-3992(03)00068-9.

30. F. Gode, E. Guneri, and O. Baglayan, Appl. Surf. Sci. 318, 227 (2014). https://doi.org/10.1016/j.apsusc.2014.04.128.

31. A. R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Álvarez, O. Gomez-Daza, M. T. S. Nair, and P. K. Nair, Phys. Stat. Sol. A 212, 2332 (2015). https://doi.org/10.1002/pssa.201532405.

32. S. John, M. Francis, R. M. Ap, and V. Geetha, Indian J. Pure Appl. Phys. 61, 326 (2023). https://doi.org/10.56042/ijpap.v61i5.70933.

33. D. Li, L. Dai, X. Ren, F. Ji, Q. Sun, Y. Zhang, and L. Ci, Energy Environ. Sci.,14, 424 (2021). https://doi.org/10.1039/D0EE02919J.

34. S. Suresh, J. Cryst. Proces. Tech. 3, 5 (2013). https://doi.org/10.4236/jcpt.2013.33014.

35. B. Aghili, S. Rahbarpour, M. Berahman, and A. Horri, J. Phys. Chem. C 128, 8077 (2024). https://doi.org/10.1021/acs.jpcc.4c01068.

36. M. S. Nithyapriya, S. Athithya, S. M. Mariappan, S. Harish, M. Navaneethan, and J. Archana, Emergent. Mat. 7, 867 (2024). https://doi.org/10.1007/s42247-023-00618-5.

37. Jadhav, C. D., Patil, G. P., Amar, M., Lyssenko, S., & Minnes, R., Journal of Power. 623, 235496 (2024). https://doi.org/10.1016/j.jpowsour.2024.235496.

38. A. Parbatani, E. S. Song, F. Yang, and B. Yu, Nanoscale 10, 15003 (2018). https://doi.org/10.1039/C8NR04047H.

39. M. S. Mahdi, K. H. Latif, A. A. Jabor, K. Ibrahim, N. M. Ahmed, A. Hmood, F. I. Mustafa, and M. Bououdina, J. Elect. Mat. 49, 5824 (2020). https://doi.org/10.1007/s11664-020-08367-5.

40. K. M. Gupta and N. Gupta, Advanced Semiconducting Materials and Devices (Cham, Springer, 2016).

Similar Articles

You may also start an advanced similarity search for this article.