Kinetic Study of Crystal Violet Dye Removal by Iron Oxide Nanoparticles Prepared by the Green Method

Main Article Content

Takleef Dheyab Sallal
https://orcid.org/0000-0002-7235-8023
Ahmed Mohammed Abbas
https://orcid.org/0000-0002-2001-4704

Abstract

The green method was chosen for the preparation of nano iron oxide due to its simplicity, ease of preparation, and purity, compared to other methods. Nano iron oxide was made using a substance that causes precipitation and a coating from the alcoholic extract of orange leaves from Iraq. It was examined structurally and spectrally using several techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning microscopy (FESEM), energy-dispersive X-ray spectroscopy, and UV-Vis spectroscopy. The diagnosis proved that the nano iron oxide was successfully prepared in a spherical form and with an average size of 71.1 nm. The nano iron oxide particles were tested for their ability to remove crystal violet (CV) dye from an aqueous solution using the adsorption technique, achieving a removal percentage of 51% at 298K, with an adsorbent dose of 0.01 g, a contact time of 90 minutes, and an initial dye concentration of 11 mg/L. The adsorption process data were analyzed kinetically using kinetic models. It was found that the process follows the pseudo-second-order kinetic model, suggesting that the type of adsorption is chemical. The results indicate the potential use of nano iron oxide to protect the aquatic environment.

Received: Nov. 13, 2024 Revised: Mar.  04, 2025 Accepted: Apr. 03, 2025

Article Details

Section

Articles

How to Cite

1.
Sallal TD, Abbas AM. Kinetic Study of Crystal Violet Dye Removal by Iron Oxide Nanoparticles Prepared by the Green Method. IJP [Internet]. 2025 Sep. 1 [cited 2025 Sep. 1];23(3):164-73. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1398

References

1. E. Roduner Chem Soc Rev., 35, 583 (2006). https://doi.org/10.1039/B502142C.

2. A. S. Tawfik, Environ. Technol. Innov., 20, 101067 (2020). https://doi.org/10.1016/j.eti.2020.101067.

3. S. Veeranna, A., Burhanuddin, S. Khanum, S. L. Narayan, and K. Pratima, K. Res. J. Biotechnol., 8, 11 (2013). https://doi.org/10.1186/s11671-019-3244-z.

4. A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, Results Phys., 7, 3007 (2017). https://doi.org/10.1016/j.rinp.2017.07.066.

5. A. M. Abbas, F. H. Abdulrazzak, W. J. Sabbar, and R. A. S. Faraj, J. Mater. Environ. Sci, 11, 2007 (2020).

6. A. Ali, H. Zafar, M. Zia, I. ul Haq, A. R. Phull, J. S. Ali, and A. Hussain, Nanotechnol Sci Appl, 49 (2016). https://doi.org/10.2147/NSA.S99986.

7. T.S. Rasha, E. A. Dunya, Iraqi J. Sci, 64, 4679 (2023). https://doi.org/10.24996/ijs.2023.64.8.5.

8. A. S. Teja, and P. Y. Koh, Prog. Cryst. Growth Charact. Mater, 55, 22 (2009). https://doi.org/10.1016/j.pcrysgrow.2008.08.003.

9. K. K. Kefeni, T. A. Msagati, T. T. Nkambule, and B. B. Mamba, J. Environ. Chem. Eng., 6, 1865 (2018). https://doi.org/10.1016/j.jece.2018.02.037.

10. C. Wu, P. Yin, X. Zhu, C. OuYang, and Y. Xie, J. Phys. Chem. B., 110, 17806 (2006). https://doi.org/10.1021/jp0633906.

11. N.Hasan, Z. Guo, and H. F. Wu, Anal Bioanal Chem., 408, 6269 (2016). https://doi.org/10.1007/s00216-016-9730-6.

12. L. K. Ruddaraju, S. V. N. Pammi, G. Sankar Guntuku,V. S. Padavala, and V. R. M. Kolapalli, Asian J. Pharm. Sci., 15, 42 (2020). https://doi.org/10.1016/j.ajps.2019.03.002.

13. F. H. Abdulrazzak, A. M. Abass, A. F. Alkaim, and F. H. Hussein, NeuroQuantology, 18, 5 (2020).

14. L. K. Ruddaraju, S. V. N. Pammi, P. V. K. Pallela, V. S. Padavala, and V. R. M. Kolapalli, Mater. Sci. Eng. C, 103, 109756 (2019). https://doi.org/10.1016/j.msec.2019.109756.

15. P. N. V. K. Pallela, S. Ummey, L. K. Ruddaraju, P. Kollu, S. Khan, and S. V. N. Pammi, SN APPL SCI. 1, 1 (2019). https://doi.org/10.1007/s42452-019-0449-9.

16. P. N. V. K. Pallela, S. Ummey, L. K. Ruddaraju, S. Gadi, C. S. Cherukuri, S. Barla, and S. V. N. Pammi, Heliyon, 5, 11 (2019). https://doi.org/10.1016/j.heliyon.2019.e02765.

17. S. Hemalatha, and R.S. Venkatesan, Ann Rom Soc Cell Biol, 1683 (2021). http://annalsofrscb.ro/index.php/journal/article/view/1614.

18. P. R. S. Baabu, H. K. Kumar, M. B. Gumpu, J. BabuK , A. J. Kulandaisamy, and J. B. B. Rayappan, Materials, 16, 59 (2022); https://doi.org/10.3390/ma16010059.

19. M. A.Jasim, A. M. Abbas, and L. M. Radhi, AIP Conf. Proc. 2372, 1 (2021). https://doi.org/10.1063/5.0068746.

20. A. M. Abbas, Y. I. Mohammed, and T. A. Himdan, Ibn al-Haitham J. Pure Appl. Sci., 28, 52 (2017). https://jih.uobaghdad.edu.iq/index.php/j/article/view/177/146.

21. I. M. Radhi, S. S. Abd, R. A. S. Faraj, A. M. Abbas, and T. A. Himdan, Mong. J. Chem., 25, 19 (2024). https://doi.org/10.5564/mjc.v25i52.3450.

22. A. Rufus, N. Sreeju, and D. Philip, RSC Adv, 6, 94206 (2016). https://doi.org/10.1039/C6RA20240C.

23. D. Y. Yass, and A. M. Abbas, Her. Bauman Mosc. State Tech. Univ. Ser. Nat. Sci., 115, 121 (2024). https://doi.org/10.1016/j.eti.2020.101072.

24. A. M. Abbas, F. H. Abdulrazzak, I. M. RadhI, A. L. AbdulLatif, T. A. Himdan, and F. H. Hussein, J. Phys. Conf. Ser., 1660, 012022 (2020). https://doi.org/10.1088/1742-6596/1660/1/012022.

25. W. Sabbar, and A. M. Abbas, Ann Rom Soc Cell Biol, 25, 5706 (2021). http://annalsofrscb.ro/index.php/journal/article/view/6587.

26. A. M. Abbas, S.S. Abd, and T. Abdulhadi Himdan, Ibn al-Haitham j. Pure Appl. Sci., 31, 58 (2018). https://doi.org/10.30526/31.1.1853.

27. A. M. Abbas, Y. I. Mohammed, and T. A. Himdan, Ibn al-Haitham J. Pure Appl. Sci., 28, 54 (2017). https://jih.uobaghdad.edu.iq/index.php/j/article/view/190/159.

28. M. Benjelloun, Y. Miyah, G. A. Evrendilek, F. Zerrouq, and S. Lairini, Arab. J. Chem., 14, 103031 (2021). https://doi.org/10.1016/j.arabjc.2021.103031.

29. S. Bentahar, A. Dbik, M. El Khomri, N. El Messaoudi, B. Bakiz, and A. Lacherai, Sci. Stud. Res., Chem. Chem, 17, 295 (2016).

30. S. S. Abd, and A. M. Abbas, Nat. Environ. Pollut. Technol, 18, 863 (2019).

31. R. A. S. Faraj, and A. M. Abbas, J. Phys. Conf. Ser., 1879, 022076 (2021). https://doi.org/10.1088/1742-6596/1879/2/022076.

32. H. Jawad, and A. M. Abbas, Ibn Al-Haitham J. Pure Appl. Sci, 34, 19 (2021). https://doi.org/10.30526/34.1.2550.

33. S. A. Saed, and D. E. AL-Mammar, Iraqi J. Sci., 1761 (2021). https://doi.org/10.24996/ijs.2021.62.6.2.

Similar Articles

You may also start an advanced similarity search for this article.