Physical Properties Studies of Magnesium Phthalocyanine (MgPc) Thin Films of Different Annealing Temperatures Prepared by Pulsed Laser Deposition Technique

Main Article Content

Noora G. Adnan
https://orcid.org/0009-0009-5232-4633
Eman K. Hassan
https://orcid.org/0000-0003-4582-0638

Abstract

Magnesium Phthalocyanine (MgPc) was deposited on a glass substrate by pulsed laser deposition (PLD) using Q-Switching Nd:YAG laser with wavelength 1064 nm, repetition rate 6 Hz, at room temperature (300K) and different annealing temperatures (373, 473, and 573)K under vacuum condition of 10-3 torr. All films were annealed for one hour to attain crystallinity. X-ray diffraction (XRD) of MgPc powder indicated that MgPc crystallizes in polycrystalline with a monoclinic structure. While comparing the MgPc films, it was observed that the intensity of the characteristic peak increases with temperature, and the crystallization exhibited a monoclinic structure typical of the β-form. The Miller indices, hkl, values for each diffraction peak in the XRD spectrum were calculated. The characteristic peak of Phthalocyanine (MgPc) was found at 2θ value 6.9137ᵒ with the hkl value of (100) for both MgPc powder and deposited thin films. Field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX) analyses indicated that crystallinity improved and surface morphology was enhanced with the rise in annealing temperature and showed uniform-sized grains. They also assisted in identifying the optimal parameters that yielded the best structural properties for the film. The optical properties of MgPc thin film showed two absorption bands. The MgPc thin films exhibit transport and onset direct energy gaps (Eg) for all samples. Additionally, the absorption coefficient (α) was calculated using Lambert Law, revealing a slight dependence on the annealing temperature.

Article Details

Section

Articles

How to Cite

1.
G. Adnan N, K. Hassan E. Physical Properties Studies of Magnesium Phthalocyanine (MgPc) Thin Films of Different Annealing Temperatures Prepared by Pulsed Laser Deposition Technique. IJP [Internet]. 2024 Sep. 1 [cited 2025 Jan. 26];22(3):116-25. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1266

References

A. Kazak, M. Marchenkova, A. Smirnova, T. Dubinina, A. Seregin, A. Rogachev, and N. Usol'tseva, ITM Web Conf. 30, 08006 (2019). DOI: 10.1051/itmconf/20193008006.

M. Pişkin, Ö. F. Öztürk, and Z. Odabaş, MANAS J. Eng. 9, 58 (2021). DOI: 10.51354/mjen.884756.

S. Jain, R. Ridhi, N. Soleimanioun, S. Bharti, G. K. Bhullar, and S. K. Tripathi, AIP Conf. Proce. 2093, 020041 (2019). DOI: 10.1063/1.5097110.

A. H. S. Mohammad and S. I. Mohammed, Kirkuk J. Sci. 15, 45 (2020). DOI: 10.32894/kujss.2020.15.2.4.

G. D. Sharma, R. Kumar, and M. S. Roy, Sol. Ener. Mat. Sol. Cel. 90, 32 (2006). DOI: 10.1016/j.solmat.2005.02.001.

M. S. Aziz, Sol. St. Elect. 50, 1238 (2006). DOI: 10.1016/j.sse.2006.05.009.

S. Rajaputra, G. Sagi, and V. P. Singh, Sol. Ener. Mat. Sol. Cel. 93, 60 (2009). DOI: 10.1016/j.solmat.2008.03.015.

Y. Ohmori, E. Itoh, and K. Miyairi, Thin Sol. Fil. 499, 369 (2006). DOI: 10.1016/j.tsf.2005.07.027.

G. Ran, J. Wang, J. Yue, M. Pei, J. Chen, and W. Zhang, Chem. Phys. Lett. 751, 137501 (2020).

DOI: 10.1016/j.cplett.2020.137501.

C. Verma, E. E. Ebenso, M. A. Quraishi, and K. Y. Rhee, J. Molec. Liq. 334, 116441 (2021).

DOI: 10.1016/j.molliq.2021.116441.

J. F. Matoko-Ngouma, B. R. Malonda-Boungou, A. T. Raji, P. S. Moussounda, and B. M’passi-Mabiala, J. Molec. Struct. 1211, 128034 (2020). DOI: 10.1016/j.molstruc.2020.128034.

G. Baburaya Kamath, C. M. Joseph, and C. S. Menon, Mat. Lett. 57, 730 (2002). DOI: 10.1016/S0167-77X(02)00862-5.

N. J. Yutronkie, B. King, O. A. Melville, B. H. Lessard, and J. L. Brusso, J. Mater. Chem. C 9, 10119 (2021). DOI: 10.1039/D1TC02275J.

N. Lanzetti, Y. Z. Lian, A. Cortinovis, L. Dominguez, M. Mercangöz, and C. Jones, 2019 18th European Control Conference (ECC) (Naples, Italy IEEE, 2019). p. 1005.

Y. Liu, X. Zhao, B. Cai, T. Pei, Y. Tong, Q. Tang, and Y. Liu, Nanoscale 6, 1323 (2014). DOI: 10.1039/C3NR05680E.

M. F. Hasaneen, H. M. Ali, M. M. Abd El-Raheem, and A. M. Abdel Hakeem, Mat. Sci. Eng. B 262, 114704 (2020). DOI: 10.1016/j.mseb.2020.114704.

M. Urbani, G. De La Torre, M. K. Nazeeruddin, and T. Torres, Chem. Soc. Rev. 48, 2738 (2019).

DOI: 10.1039/C9CS00059C.

S. N. Ogugua, O. M. Ntwaeaborwa, and H. C. Swart, Coatings 10, 1078 (2020). DOI: 10.3390/coatings10111078.

E. Ortí, J. L. Brédas, and C. Clarisse, J. Chem. Phys. 92, 1228 (1990). DOI: 10.1063/1.458131.

M. Abd El-Rahman, K. M. Yassien, and A. a. M. Yassene, Optik 183, 962 (2019). DOI: 10.1016/j.ijleo.2018.12.182.

M. Socol, N. Preda, and G. Socol, Coatings 11, 1368 (2021). DOI: 10.3390/coatings11111368.

K. R. Rajesh and C. S. Menon, Mat. Lett. 53, 329 (2002). DOI: 10.1016/S0167-577X(01)00502-X.

E. Kavetsou, C. Tsoukalas-Koulas, A. Katopodi, A. Kalospyros, E. Alexandratou, and A. Detsi, Bioengineering 10, 244 (2023). DOI: 10.3390/bioengineering10020244.

A. A. Ramadhan, Iraqi J. Phys. 15, 131 (2019). DOI: 10.30723/ijp.v15i33.149.

E. K. Hassan, Iraqi J. Phys. 13, 170 (2019). DOI: 10.30723/ijp.v13i28.255.

M. M. El-Nahass, A. A. Atta, H. E. A. El-Sayed, and E. F. M. El-Zaidia, Appl. Surf. Sci. 254, 2458 (2008). DOI: 10.1016/j.apsusc.2007.09.064.

B. Olmos, C. Liedl, I. Lesanovsky, and P. Schneeweiss, Phys. Rev. A 104, 043517 (2021).

DOI: 10.1103/PhysRevA.104.043517.

A. M. Abdelghany, A. A. Menazea, and A. M. Ismail, J. Molec. Struct. 1197, 603 (2019).

DOI: 10.1016/j.molstruc.2019.07.089.

S. M. Khorsheed and N. M. Yaseen, J. Phys. Conf. Ser. 1897, 012074 (2021). DOI: 10.1088/1742-596/1897/1/012074.

A. Boguta, D. Wróbel, A. Bartczak, R. Swietlik, Z. Stachowiak, and R. M. Ion, Mat. Sci. Eng. B 113, 99 (2004).

DOI: 10.1016/j.mseb.2004.07.005.

P. Raji, C. Sanjeeviraja, and K. Ramachandran, Bull. Mater. Sci. 28, 233 (2005). DOI: 10.1007/BF02711253.

R. E. Hummel, Electronic Properties of Materials (USA, Springer Science & Business Media, 2011).

R. Prabakaran, E. Fortunato, R. Martins, and I. Ferreira, J. Non-Crys. Sol. 354, 2892 (2008).

DOI:10.1016/j.jnoncrysol.2007.10.096.

E. K. Hassan, NeuroQuantology 18, 45 (2020). DOI: 10.14704/nq.2020.18.3.NQ20149.

N. S. Hamzah and E. K. Hassan, Int. J. Nanosci. 22, 2350028 (2023). DOI: 10.1142/S0219581X2350028X.

R. Seoudi, G. S. El-Bahy, and Z. A. El Sayed, J. Molec. Struct. 753, 119 (2005). DOI: 10.1016/j.molstruc.2005.06.003.

Similar Articles

You may also start an advanced similarity search for this article.