Fabrication of Carbon Quantum Dots/Alq3 Layer for NO2 Gas Sensor

Main Article Content

Nooriyah Ahmed Abd
Omar Adnan Ibrahim
https://orcid.org/0000-0003-3709-5245

Abstract

The gas sensors were prepared using carbon quantum dots (CQDs) using an electrochemical method after mixing the CQDs with Tris (8-hydroxyquinoline) aluminum (III) (Alq3) polymer. A spin coating technique was used to deposit CQDs/Alq3 composite film on glass substrates with a ratio of 1:1. The CQDs/Alq3 gas sensor showed a sensitivity of about 24٪ at a temperature of 300 ℃, and this was calculated after measuring the change in the resistance of the samples with a response time of 2 and 8sec recovery time. The sensor showed a good response for nitrogen dioxide (NO2) gas. However, the sensitivity, response time, and recovery time for the CQDs gas sensor when exposed to NO2 gas at 300 °C were 78%, 4s, and 129s, respectively. The results showed that the best sensor CQDs/Alq3 led to a reduction in the recovery time, which shows the importance of the Alq3 polymer in improving the properties of the gas sensor.

Article Details

How to Cite
1.
Fabrication of Carbon Quantum Dots/Alq3 Layer for NO2 Gas Sensor. IJP [Internet]. 2024 Jun. 1 [cited 2024 Jun. 30];22(2):1-10. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1214
Section
Articles

How to Cite

1.
Fabrication of Carbon Quantum Dots/Alq3 Layer for NO2 Gas Sensor. IJP [Internet]. 2024 Jun. 1 [cited 2024 Jun. 30];22(2):1-10. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1214

References

- A. Hulanicki, S. Glab, F. Ingman, Pure Appl. Chem., 63(9), 1247–1250 (1991).

- Z. Yunusa, M. N. Hamidon, A. Kaiser, Z. Awang, sensors & Transducers, 168(4), 61-75 (2014).

- J. Janata, M. Josowicz, Nat. Mater., 2, 19–24 (2003).

- Y. Wang, J. T. W. Yeow, J. Sens., 2009, 1-24 (2009).

- S. M. Kanan, O. M. El-Kadri, Sensors, 9, 8158–8196 (2009).

- Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, J. H. Liu, Sensors, 12, 2610–2631 (2012).

- S. Karthikeyan, H. M. Pandya, M. U. Sharma, K. Gopal, J. Environ. Nanotechnol. 4(4), 01-14 (2015).

- S. K. Pandey, K. H. Kim, Environ. Sci. & Technol., 43(9), 3020–3029 (2009).

- G. F. Fine, L. M. Cavanagh, A. Afonja, R. Binions, Sensors, 10, 5469-5502 (2010).

- Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, T. Kawabata, Appl. Phys. Lett., 90, 173119 (2007).

- A. Ponzoni, C. Baratto, N. Cattabiani, M. Falasconi, V. Galstyan, E. Nunez-Carmona, F. Rigoni, V. Sberveglieri, G. Zambotti, D. Zappa, Sensors, 17, 714 (2017).

- C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors, 10, 2088–2106 (2010).

- H. Yoon, Nanomaterials, 3, 524–549 (2013).

- J. Qu, Y. Chai, S. X. Yang, Sensors, 9, 895–908 (2009).

- T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, IEEE Trans. Geosci. Remote Sens., 49, 572–580 (2011).

- L. Liu, X. Li, Z. Li, Y. Shi, Chemical Engineering Transactions, 68, 265-270 (2018).

- M. Alexandra, S. Clarice, T. P. Rafaella, M. G. Adriana, D. M. B. Humberto, C. de C. Bruno, L. B. José , Paulo, Chemical 282, 606-616 (2019).

- R. Lan, J. T. Irvine, S. Tao, Int. J. Hyd. Ener., 37, 1482 (2012).

- S. W. Lee, W. Lee, Y. Hong, G. Lee, and D. S. Yoon, Sens. Actuators B Chem. 255, 1788, (2018).

- N. Yamazoe, Sensors and Actuators B: Chemical, 108(1-2), 2-14 (2005).

- X. L. Kou, S. C. Jiang, S. J. Park, L. Y. Meng, Dalton Trans., 21, 6915–6938 (2020).

- S. Lu, G. Xiao, L. Sui, T. Feng, X. Yong, B. Yang, Angew. Chem. Int. Ed., 56, 6187–6191 (2017).

- S. Sun, Q. Guan, Y. Liu, B. Wei, Z. Yu, Chin. Chem. Lett, 30, 1051–1054 (2019).

- S. Wang, X. Bao, B. Gao, M. Li, Dalton Trans., 48, 8288–8296 (2019).

- A. H. Abd, O. A. Ibrahim, Chemical Methodologies, 6, 825-830 (2022).

- Xie, G, Appl. Phys. Lett., 92, 451-458 (2008).

- Y. Guo, S. Jangi, M. A. Weltr, Semicond. Sci. Technol. 20, 310–313 (2005).

- F. J. Mohammed, Instrumental chemical analysis, Baghdad University Press, 1984.

- D. Jung, M. Han, G. S. Lee, ACS appl. Mater. interfaces, 7(5), 3050-3057 (2015).

- K. M. Ibrahim, W. R. Saleh, A. M. A. Al-Sammarraie, Nano Hybrids and Composites, 35, 75-83 (2022).

- S. K. Abbas, A. N. Naje, Nano Hybrids and Composites, 30, 1-7 (2020).

- S. K. Abbas, A. N. Naje, Iraqi Journal of Physics, 18(47), 62-72 (2020).

- S. S. Al-Awadi, A. A, Ramadhan, F. T. Ibrahim, A. K. Abbood, Iraqi Journal of Science, 61(10) 2562-2569 (2020).

- R. A. Abbas, D. A. Abbass, Iraqi Journal of Science, 60, 84-90 (2019).

- A. A. Hameed, H. S. AL-Jumaili, Iraqi Journal of Science, 62(7), 2204-2212 (2021).

- S. M. Omran, E. T. Abdullah, O. A. Al-Zuhairi, Iraqi Journal of Science, 63(9), 3719-3726 (2022).

- S. S. Al-Awadi, A. A. Ramadhan, F. T. Ibrahim, A. K. Abbood, Iraqi Journal of Science, 61(10), 2562-2569 (2020).

- H. A. Abdulrahman, M. F. A. Alias, Iraqi Journal of Science, 62(11), 3858-3870 (2021).

- S. A. Khalaf, I. M. Ali, Iraqi Journal of Physics, 17(40), 21-32 21 (2019).

- G. A. Kadhim, M. H. Suhail, Indian Journal of Natural Sciences, 9(52), 2019.

- N. M. Al-Makram, W. R. Saleh, Iraqi Journal of Science, 62(8), 2543-2554 (2021).

- U. A. S. Al-Jarah, H. J. Mohamad, Y. M. Abdul-Hussein, Indonesian Journal of Electrical Engineering and Computer Science, 28(2), 686-692 (2022).

- S. K. Abbas, A. N. Naje, Journal of nano-and electronic physics, 11(5), 2019.

- H. H. Nayel, H. S. AL-Jumaili, Iraqi Journal of Science, 61(4), 772-779 (2020).

- S. A. Hamdan, Iraqi Journal of Physics, 19(50), 20-30 (2021).

- S. M. Abdul Kareem, M. H. Suhail, I. K. Adehmash, Iraqi Journal of Science, 62(7), 2176-2187 (2021).

- S. Y. Guo, P. X. Hou, F. Zhang, C. Liu, H. M. Cheng, Molecules, 27, 5381 (2022).

- W. K. Mahmood, A. N. Naje, M. M. Kadhim, Design Engineering, 8, 6485-6492 (2021).

- W. A. Al-Taa'y, B. A. Hasan, Iraqi Journal of Science, 62(11), 4385-4396 (2021).

Similar Articles

You may also start an advanced similarity search for this article.