Study of Some Physical and Antibacterial Properties of Bio-based (PLA)/(PCL) Blend reinforced with ZrO2 Nanoparticles
Main Article Content
Abstract
The aim of this study was to produce flexible films by combining polylactic acid (PLA) and poly(ε-caprolactone) (PCL), and enhance their strength by reinforcing them with different weight percentages (0.75, 1.5, and 2.25%) of zirconium oxide (ZrO2) nanoparticles (NPs) using a solvent casting process. The physical and antibacterial properties of the films were analysed to determine their suitability for use in food packaging. X-ray diffraction (XRD) patterns of the PLA/PCL films containing 2.25% by weight ZrO2 nanoparticles have a peak at an angle of 2θ = 17.18°, accompanied by smaller peaks. This confirms that these thin films have a semi-crystalline structure and that the molecules in the thin films are well dispersed. Scanning electron microscopy (SEM) analysis of the film surfaces reveals that the pure PLA/PCL films exhibit a smooth surface, while the (PLA/PCL/ZrO2NPs) films have a rough surface. The thermal behaviour of the blends through differential scanning calorimetry (DSC) showed fluctuations due to variations in the reinforcement ratio, resulting in changes in the glass transition and melting temperatures. These oscillations indicate changes in the level of crystallinity. ZnO2 has antibacterial properties that promote growth inhibition, making these films more effective in food packaging.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
I. Fortelny, A. Ujcic, L. Fambri, and M. Slouf, Sec. Poly. Comp. Mat. 6, 1 (2019). DOI: 10.3389/fmats.2019.00206.
W. Lin, H. Shen, G. Xu, L. Zhang, J. Fu, and X. Deng, Comp. Part A Appl. Sci. Manufact. 115, 22 (2018). DOI: 10.1016/j.compositesa.2018.09.008.
J. De Carvalho Arjona, M. Das Graças Silva-Valenzuela, S.-H. Wang, and F. R. Valenzuela-Diaz, Polymers 13, 722 (2021). DOI: 10.3390/polym13050722.
C. G. Chiaregato, C. F. Souza, and R. Faez, Envir. Tech. Innovat. 22, 101417 (2021). DOI: 10.1016/j.eti.2021.101417.
S. Sahani and Y. C. Sharma, Food Chem. 342, 128318 (2021). DOI: 10.1016/j.foodchem.2020.128318.
J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, Beilstein J. Nanotech. 9, 1050 (2018). DOI: 10.3762/bjnano.9.98.
I. M. Ali, A. A. Mohammed, and A. H. Ajil, Iraqi J. Phys. 14, 191 (2016). DOI: 10.30723/ijp.v14i29.235.
A. Z. Naser, I. Deiab, and B. M. Darras, RSC Advances 11, 17151 (2021). DOI: 10.1039/D1RA02390J.
B. U. Nam and Y. Son, J. Appl. Poly. Sci. 137, 49011 (2020). DOI: 10.1002/app.49011.
D. Rasselet, M. F. Pucci, A.-S. Caro-Bretelle, J.-M. Lopez-Cuesta, and A. Taguet, Nanomaterials 11, 1721 (2021). DOI: 10.3390/nano11071721.
T. Standau, C. Zhao, S. Murillo Castellón, C. Bonten, and V. Altstädt, Polymers 11, 306 (2019). DOI: 10.3390/polym11020306.
X. Zhao, H. Hu, X. Wang, X. Yu, W. Zhou, and S. Peng, RSC Advan. 10, 13316 (2020). DOI: 10.1039/D0RA01801E.
M. Delgado-Aguilar, R. Puig, I. Sazdovski, and P. Fullana-I-Palmer, Materials 13, 2655 (2020). DOI: 10.3390/ma13112655.
A. H. Mohsen and N. A. Ali, Iraqi J. Sci. 63, 4761 (2022). DOI: 10.24996/ijs.2022.63.11.15.
M. Catauro, E. Tranquillo, G. D. Poggetto, S. Naviglio, and F. Barrino, Macromolecular Symposia (Poland Wiley Online Library, 2020). p. 1900056.
C. Güneş Çimen, M. A. Dündar, M. Demirel Kars, and A. Avcı, ACS Biomat. Sci. Eng. 8, 3717 (2022). DOI: 10.1021/acsbiomaterials.2c00611.
S. Beikzadeh, S. M. Hosseini, V. Mofid, S. Ramezani, M. Ghorbani, A. Ehsani, and A. M. Mortazavian, Int. J. Bio. Macromol. 191, 457 (2021). DOI: 10.1016/j.ijbiomac.2021.09.065.
F. Maghfoori, N. Najmoddin, and M. Pezeshki‐Modaress, Sci. J. Appl. Poly. 139, e52684 (2022). DOI: 10.1002/app.52684.
P. J. Rivero, J. P. Fuertes, A. Vicente, Á. Mata, J. F. Palacio, M. Monteserín, and R. Rodríguez, Polymers 13, 4312 (2021). DOI: 10.3390/polym13244312.
K. Hamad, M. Kaseem, M. Ayyoob, J. Joo, and F. Deri, Prog. Poly. Sci. 85, 83 (2018). DOI: 10.1016/j.progpolymsci.2018.07.001.
S. Hussein, A. Abd-Elnaiem, N. Ali, and A. Mebed, Current Nanosci. 16, 994 (2020). DOI: 10.2174/1573413716666200310121947.
M. Dadras Chomachayi, A. Jalali-Arani, F. R. Beltrán, M. U. De La Orden, and J. Martínez Urreaga, J. Poly. Envir. 28, 1252 (2020). DOI: 10.1007/s10924-020-01684-0.
B. Al-Shabander, A. Mohammed, and H. Jaffer, Iraqi J. Sci. 54, 105 (2013). DOI: https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/12038.
O. Okolie, A. Kumar, C. Edwards, L. A. Lawton, A. Oke, S. Mcdonald, V. K. Thakur, and J. Njuguna, J. Compos. Sci. 7, 213 (2023). DOI: 10.3390/jcs7060213.
J. I. Castro, D. G. Araujo-Rodríguez, C. H. Valencia-Llano, D. López Tenorio, M. Saavedra, P. A. Zapata, and C. D. Grande-Tovar, Pharmaceutics 15, 2196 (2023). DOI: 10.3390/pharmaceutics15092196.
C. Swaroop and M. Shukla, Mat. Today Proce. 5, 20711 (2018). DOI: 10.1016/j.matpr.2018.06.455.
C. V. Reddy, B. Babu, I. N. Reddy, and J. Shim, Ceram. Int. 44, 6940 (2018). DOI: 10.1016/j.ceramint.2018.01.123.
S. Solechan, A. Suprihanto, S. A. Widyanto, J. Triyono, D. F. Fitriyana, J. P. Siregar, and T. Cionita, Polymers 15, 559 (2023). DOI: 10.3390/polym15030559.
M. Dadras Chomachayi, A. Jalali-Arani, and J. Martínez Urreaga, J. Poly. Envir. 29, 2585 (2021). DOI: 10.1007/s10924-021-02053-1.
A. N. Obaid and N. Ali, Iraqi J. Phys. 18, 1 (2020). DOI: 10.30723/ijp.v18i47.617.
A. N. Ali, M. A. Abd-Elnaiem, I. S. Hussein, S. A. Khalil, R. H. Alamri, and S. H. Assaedi, Curr. Nanosci. 17, 494 (2021). DOI: 10.2174/1573413716999200820145518.