Thermodynamic and Spectroscopic Properties Investigation of Coronene as a Function of the Number of Oxygen Atoms and Temperature via Density Functional Theory

Main Article Content

Taif Talib Khalaf
https://orcid.org/0009-0000-2779-3061
Mohammed T. Hussein
https://orcid.org/0000-0002-6367-7807

Abstract

The study focused on the thermodynamics characteristics such as (Gibbs free energy, heat capacity, entropy and enthalpy) and spectroscopic properties like (IR spectra, reduced masses, and force constant) of coronene (C24) and reduced coronene oxide (C24OX) where X =1–5 as a function of number of oxygen atoms and temperature from (298-398) oK. Density functional theory was used in the methodology with the basis sets 6-311G** and the hybrid functional B3LYP (Becke, 3-parameters, Lee-Yang-Parr), utilizing the Gaussian 09W program. Gaussian view 05 was used as a complementary program to calculate the geometrical structures. The Gibbs free energy and enthalpy decrease (negative sign) with increased oxygen atoms and temperature, indicating an exergonic reaction. The entropy and heat capacity increased with the number of oxygen atoms and temperature. The spectroscopic characteristics were compared with experimental results, particularly the longitudinal optical modes of vibration for graphene and graphene oxide (1585 - 1582) cm-1, which were in good agreement.

Article Details

How to Cite
1.
Thermodynamic and Spectroscopic Properties Investigation of Coronene as a Function of the Number of Oxygen Atoms and Temperature via Density Functional Theory. IJP [Internet]. 2024 Jun. 1 [cited 2024 Jun. 30];22(2):81-9. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1239
Section
Articles

How to Cite

1.
Thermodynamic and Spectroscopic Properties Investigation of Coronene as a Function of the Number of Oxygen Atoms and Temperature via Density Functional Theory. IJP [Internet]. 2024 Jun. 1 [cited 2024 Jun. 30];22(2):81-9. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1239

References

T. G. Vladkova, I. A. Ivanova, A. D. Staneva, M. G. Albu, A. S. Shalaby, T. I. Topousova, and A. S. Kostadinova, J. Arch. Mil. Med. 5, e13223 (2017).

Y. Gao, J. Wu, X. Ren, X. Tan, T. Hayat, A. Alsaedi, C. Cheng, and C. Chen, Envir. Sci. Nano 4, 1016 (2017).

H. Fallatah, M. Elhaneid, H. Ali-Boucetta, T. W. Overton, H. El Kadri, and K. Gkatzionis, Envir. Sci. Pollut. Res. 26, 25057 (2019).

G. J. Simandl, S. Paradis, and C. Akam, British Columb. Minis. En. Min. British Columb. Geo. Sur. 3, 163 (2015).

J. Li, X. Zeng, T. Ren, and E. Van Der Heide, Lubricants 2, 137 (2014).

J. Cai, J. Tian, H. Gu, and Z. Guo, ES Mat. Manuf. 6, 68 (2019).

H. Deng, J. Yin, J. Ma, J. Zhou, L. Zhang, L. Gao, and T. Jiao, Appl. Surf. Sci. 543, 148821 (2021).

A. M. Pinto, I. C. Goncalves, and F. D. Magalhaes, Coll. Surf. B Biointer. 111, 188 (2013).

E. Jennings, W. Montgomery, and P. Lerch, J. Phys. Chem. 114, 15753 (2010).

S. M. Omran, E. T. Abdullah, and O. A. Al-Zuhairi, Iraqi J. Sci. 63, 3719 (2022).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-E. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

A. A. Menazea, H. A. Ezzat, W. Omara, O. H. Basyouni, S. A. Ibrahim, A. A. Mohamed, W. Tawfik, and M. A. Ibrahim, Comput. Theo. Chem. 1189, 112980 (2020).

H. Liu and Y. Mao, ES Mat. Manuf. 13, 3 (2021).

A. Marlinda, N. Yusoff, S. Sagadevan, and M. Johan, Int. J. Hydrog. En. 45, 11976 (2020).

S. Sagadevan, Z. Z. Chowdhury, M. R. B. Johan, and R. F. Rafique, Mat. Res. Expr. 5, 035014 (2018).

Y. Xu, K. Sheng, C. Li, and G. Shi, ACS Nano 4, 4324 (2010).

D. Zhang, J. Liu, C. Jiang, A. Liu, and B. Xia, Sens. Act. B Chem. 240, 55 (2017).

D. Zhang, Y. E. Sun, P. Li, and Y. Zhang, ACS Appl. Mat. Inter. 8, 14142 (2016).

C. A. Zito, T. M. Perfecto, and D. P. Volanti, Sens. Act. B Chem. 244, 466 (2017).

A. H. Mohammed and A. N. Naje, Iraqi J. Sci. 63, 5218 (2022).

F. El-Hossary, A. Ghitas, A. Abd El-Rahman, M. A. Shahat, and M. H. Fawey, Vacuum 188, 110158 (2021).

S. Park and R. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

J. C. Fetzer, Large (C>= 24) Polycyclic Aromatic Hydrocarbons: Chemistry and Analysis (USA, John Wiley & Sons, 2000).

F. R. Nikmaram, K. Kalateh, and P. Kanganizadeh, Int. J. New Chem. 1, 160 (2014).

V. Zubkov, Geochem. Int. 47, 741 (2009).

L. Allamandola, S. Sandford, and B. Wopenka, Science 237, 56 (1987).

B. J. Frogley and L. J. Wright, Angewan. Chem. 129, 149 (2017).

S. Prodhan, S. Mazumdar, and S. Ramasesha, Molecules 24, 730 (2019).

M. F. Budyka, Spectrochim. Acta Part A Molec. Biomolec. Spect. 207, 1 (2019).

B. Saha and P. K. Bhattacharyya, ACS Omega 3, 16753 (2018).

S. Drewniak, Ł. Drewniak, and T. Pustelny, Sensors 22, 5316 (2022).

D.-T. Phan and G.-S. Chung, J. Phys. Chem. Sol. 74, 1509 (2013).

G. Ejuh, F. Tchangnwa Nya, N. Djongyang, and J. Ndjaka, SN Appl. Sci. 2, 1 (2020).

M. El Masfioui, S. Bahsine, A. Elbiyaali, and F. Allali, E3S Web of Conferences (EDP Sciences, 2022). p. 00048.

S. K. Abdulradha, M. T. Hussein, and M. A. Abdulsattar, Int. J. Nanosci. 21, 2250009 (2022).

E. Zins, M. Guinet, D. Rodriguez, and S. Payan, J. Quant. Spect. Rad. Tran. 283, 108141 (2022).

M. A. Abdulsattar, Karbala Int. J. Mod. Sci. 6, 13 (2020).

N. F. Jafer and M. T. Hussein, Int. J. Nanosci. 21, 2250006 (2022).

N. Kerru, L. Gummidi, S. V. Bhaskaruni, S. N. Maddila, P. Singh, and S. B. Jonnalagadda, Sci. Rep. 9, 19280 (2019).

F. A. Hasan and M. T. Hussein, Mat. Today Proce. 42, 2638 (2021).

M. T. Hussein, Iraqi J. Phys. 15, 54 (2017).

S. Tingting, Z. Fuchun, and Z. Weihu, Rar. Met. Mat. Eng. 44, 2409 (2015).

M. A. Abdulsattar, H. H. Abed, R. H. Jabbar, and N. M. Almaroof, J. Molec. Graph. Mod. 102, 107791 (2021).

P. Pal, A. Yadav, P. S. Chauhan, P. K. Parida, and A. Gupta, Sens. Int. 2, 100072 (2021).

M. Hussein, T. Fayad, and M. Abdulsattar, Chalcogen. Lett. 16, 557 (2019).

S. K. Abdulridha, M. A. Abdulsattar, and M. T. Hussein, Struct. Chem. 33, 2033 (2022).

M. T. Hussein and H. A. Thjeel, Journal of Physics: Conference Series (IOP Publishing, 2019). p. 012015.

M. Frisch, G. Trucks, H. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant, Gaussian 03, Revision c. 02, Gaussian (Pittsburgh, PA, USA, Inc., Wallingford, CT, 2004).

C.-S. Jia, L.-H. Zhang, X.-L. Peng, J.-X. Luo, Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, and L.-D. Tang, Chem. Eng. Sci. 202, 70 (2019).

M. Popovic, G. B. Stenning, A. Göttlein, and M. Minceva, J. Biotech. 331, 99 (2021).

A. Jorio, ISRN Nanotechnology 2012, 1 (2012).

Y. Shen, S. Yang, P. Zhou, Q. Sun, P. Wang, L. Wan, J. Li, L. Chen, X. Wang, and S. Ding, Carbon 62, 157 (2013).

W. Gao, Z. Li, and N. M. Sammes, Introduction to Electronic Materials for Engineers (Singapore, World Scientific Publishing Company, 2011).

Similar Articles

You may also start an advanced similarity search for this article.