Influence of NiTi Spring Dimensions and Temperature on the Actuator Properties
Main Article Content
Abstract
Nitinol (NiTi) is used in many medical applications, including hard tissue replacements, because of its suitable characteristics, including a close elastic modulus to that of bones. Due to the great importance of the mechanical properties of this material in tissue replacements, this work aims to study the hysteresis response in an attempt to explore the ability of the material to remember its previous mechanical state in addition to its ability to withstand stress and to obtain the optimal dimensions and specifications for the manufacturer of NiTi actuators. Stress-strain examination is done in a computational way using a mutable Lagoudas MATLAB code for various coil radii, environment temperatures, and coil lengths. The computational methodology was done by varying the dimensions and the ambient temperature of the simulated NiTi spring actuator. The hysteresis loop is studied by increasing the external stress for a reversible martensitic transformation. The coil radius, spring height, and wire radius affect the spring force and deformations. In the same way, these parameters affect the strain and stress point values. These changes are shown through the martensite and austenite start and finish values. The NiTi hysteresis loop narrows with increasing ambient temperature or initial spring height. At a higher temperature, the force supplied to the actuator must be less for the same deformation; therefore, a higher ambient temperature provides more efficiency for the shape memory devices and a longer lifetime for the actuator.
Received: May 26, 2023
Revised: Aug 16, 2023
Accepted: Aug 18, 2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
References
M. N. Makdisi and Z. A. Al Shadidi, Iraqi J. Sci. 51, 301 (2010).
C. Yu, H. M. Jiang, D. Song, Y. Zhu, and G. Kang, Int. J. Plastic. 165, 103614 (2023).
S. Kadkhodaei and A. V. D. Walle, Acta Mat. 147, 296 (2018).
G. Ren and H. Sehitoglu, Comput. Mat. Sci. 123, 19 (2016).
X. Yang and J. Shang, Appl. Sci. 2021, 6878 (2021).
D. Mulhall and M. J. Moelter, Am. J. Phys. 82, 665 (2014).
X. Huang, C. Bungaro, V. Godlevsky, and K. M. Rabe, Phys.l Rev. B 65, 014108 (2001).
J. M. S. Al-Murshdy and N. Y. Ali, in Journal of Physics: Conference Series, IOP Publishing, 2021, p. 012073.
S. B. Bakhtiar, PhD. Thesis, University of Western Australia, (2019).
S. A. Amin and A. Y. Hassan, J. Eng. Sustain. Dev. 23, 1 (2019).
S. H. Ali, A. A. Eidan, and A. Al Sahlani, in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 012009.
S. A. Mohammed, E. S. Kadhim, and R. M. Alwan, Iraqi J. Appl. Phys. 17, 29 (2021).
G. Song, Smart Mat. Struc. 16, 1796 (2007).
M. Kalmar, A. Boese, I. Maldonado, R. Landes, and M. Friebe, Med. Dev.: Evid. Res. 12, 285 (2019).
L. C. Brinson, J. Intel. Mat. Syst. Struc. 4, 229 (1993).
B. L. Franco, MSc. Thesis, Texas A and M University, (2014).
V. B. Krishnan, MSc. Thesis, University of Central Florida Orlando, (2004).
I. Chopra, AIAA J. 40, 2145 (2002).
L. Petrini and F. Migliavacca, J. Metal. 2011, 1 (2011).
J. Wang, B. Huang, X. Gu, J. Zhu, and W. Zhang, Int. J. Mech. Sci. 236, 107744 (2022).
D. J. S. Ruth, Trans. Indian Nat. Acad. Eng. 6, 523 (2021).
B. Koҫkar, Shap. Mem. Superelast., (2023).
N. Farjam, R. Mehrabi, H. Karaca, R. Mirzaeifar, and M. Elahinia, in Behavior and Mechanics of Multifunctional Materials and Composites XII, SPIE, 2018, p. 187.
J. Meiser and H. M. Urbassek, Metals 8, 837 (2018).
V. A. L’vov, E. Cesari, A. Kosogor, J. Torrens-Serra, V. Recarte, and J. I. Pérez-Landazábal, Metals 7, 509 (2017).
B. Yuan, M. Zhu, and C. Y. Chung, Materials 11, 1716 (2018).
S. Abbas, S. Maleksaeedi, E. Kolos, and A. J. Ruys, Materials 8, 4344 (2015).
M. Petersmann, T. Antretter, G. Cailletaud, A. Sannikov, U. Ehlenbröker, and F.-D. Fischer, Int. J. Plast. 119, 140 (2019).
A. Khudhair, F. Hatem, and D. Mohammed Ridha, Eng. Tech. J. 36, 586 (2018).
C. Naresh, P. Bose, and C. Rao, in IOP conference series: materials science and engineering, IOP Publishing, 2016, p. 012054.
M. L. L. Júnior, L. Pino, M. Barati, L. Saint-Sulpice, L. Daniel, and S. A. Chirani, Smart Mat. Struc. 32, 065002 (2023).
B. Dhakal, D. Nicholson, A. Saleeb, S. Padula, and R. Vaidyanathan, Smart Mat. Struc. 25, 095056 (2016).
R. B. Sreesha, S. H. Ladakhan, D. Mudakavi, and S. M Adinarayanappa, Int. J. Adv. Manuf. Tech. 122, 4421 (2022).
S. Singh, S. Karthick, and I. Palani, Vacuum 191, 110369 (2021).
P. Shayanfard, L. Heller, P. Šandera, and P. Šittner, Eng. Fract. Mech. 244, 107551 (2021).
J. G. Boyd and D. C. Lagoudas, Int. J. Plast. 12, 805 (1996).
D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Int. J. Plast. 32, 155 (2012).
W. Rączka, J. Konieczny, and M. Sibielak, Sol. St. Phenom. 199, 365 (2013).
S. Enemark, I. F. Santos, and M. A. Savi, J. Intel. Mat. Sys. Struct. 27, 2721 (2016).
A. Weirich and B. Kuhlenkötter, in Actuators, MDPI, 2019, p. 61.
Y. Zhang, C. Yu, Y. Zhu, Q. Kan, and G. Kang, Int. J. Mech. Sci. 236, 107767 (2022).
H. De Souza Oliveira and A. S. De Paula, Smart Mat. Struct. 29, 105033 (2020).
S. Mohan and A. Banerjee, Smart Mat. Struct. 30, 055011 (2021).
S. S. Hiadrah, Iraqi J. Sci. 64, 2843 (2023).
G. Cousland, X. Cui, A. Smith, A. Stampfl, and C. Stampfl, J. Phys. Chem. Sol. 122, 51 (2018).
J. Schijve, Fatigue of structures and materials. 2nd Ed. (Dordrecht, Springer, 2009).
B. Yang, Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes. (Burlington, USA, Academic Press, 2005).
D. Hartl, D. Lagoudas, F. Calkins, and J. Mabe, Smart Mat. Struct. 19, 015020 (2009).
F. Auricchio, G. Scalet, and M. Urbano, J, Mat. Eng. Perform. 23, 2420 (2014).
E. Toptas, M. F. Celebi, and S. Ersoy, J. Measur. Eng. 9, 87 (2021).