Photometry Technique to Map Elements’ Distribution on Comets’ Nuclei Surfaces Using a New Method
Main Article Content
Abstract
This study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percentage of the elements was determined relative to iron, where in comet Temple 1, the most significant percentage of the element ratio potassium to iron is K / Fe ~ 28.2%, while the lowest value is Ca / Fe ~ 1.3%. For the comet, 67P/Churyumov-Gerasimenko, the most significant percentage of the elements relative to iron is also for potassium, K / Fe ~ 89.5%; while the lowest value is Ni / Fe ~ 0.26. In general, comparing both comets, the greatest percentage of the elements relative to iron is K / F. Iron is the base element in the structure of both comets, followed by potassium.
Received: Jun 05, 2023
Revised: Jul 02, 2023
Accepted: Aug 16, 2023
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
L. Velho, A. C. Frery, and J. Gomes, Image Processing for Computer Graphics and Vision. 2nd Ed. (London, Springer Science and Business Media, 2009).
K. H. Abbas, S. Z. Khalaf, and A. A. Selman, Sci. Int. 30, 729 (2018).
S. Khalaf, A. Selman, and E. Al-Lateef, Int. J. Sci. Eng. Res. 4, 39 (2013).
S. Z. Khalaf, Iraqi J. Sci. 48, 244 (2007).
S. Z. Khalaf, A. A. Selman, and H. S. Ali, Al-Nahrain J. Sci. 11, 80 (2008).
A. L. Cochran, H. F. Levison, S. A. Stern, and M. J. Duncan, Astrophys. J. 455, 342 (1995).
J. González, I. Romero, J. Barquinero, and O. García, Mut. Res./Gen. Toxic. Envir. Mutagen. 748, 60 (2012).
A. Springmann, W. M. Harris, E. L. Ryan, C. Lejoly, E. S. Howell, B. E. Mueller, N. H. Samarasinha, L. M. Woodney, and J. K. Steckloff, Planet. Sci. J. 3, 15 (2022).
A. Hanslmeier, Introduction to Astronomy and Astrophysics. (Graz, Ausria, Springer Nature, 2023).
P. Thomas, M. A’hearn, M. Belton, D. Brownlee, B. Carcich, B. Hermalyn, K. Klaasen, S. Sackett, P. Schultz, and J. Veverka, Icarus 222, 453 (2013).
G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook. 3rd Ed. (UK, Cambridge University Press, 2020).
D. Salomon, Coding for Data and Computer Communications. (Northridge, CA, USA, Springer Science and Business Media, 2006).
R. S. Najm, S. Z. Khalaf, and K. I. Abood, Iraqi J. Sci. 64, 469 (2023).
Y. Zhang, T. Sun, C. Wang, L. Ji, J. A. Carter, S. Sembay, D. Koutroumpa, Y. D. Liu, G. Liang, and W. Liu, Astrophys. J. Lett. 932, L1 (2022).
M. A. Cordiner, I. Coulson, E. Garcia-Berrios, C. Qi, F. Lique, M. Zołtowski, M. De Val-Borro, Y.-J. Kuan, W.-H. Ip, and S. Mairs, Astrophys. J. 929, 38 (2022).
F. Manzini, V. Oldani, P. Ochner, E. Barbotin, L. Bedin, R. Behrend, and G. Fardelli, Mon. Noti. Roy. Astronomic. Soci. 506, 6195 (2021).
B. Snios, J. Lichtman, and V. Kharchenko, Astrophys. J. 852, 138 (2018).
D. Bodewits, D. J. Christian, M. Torney, M. Dryer, C. Lisse, K. Dennerl, T. Zurbuchen, S. Wolk, A. Tielens, and R. Hoekstra, Astro. Astrophys. 469, 1183 (2007).
B. Snios, V. Kharchenko, C. M. Lisse, S. J. Wolk, K. Dennerl, and M. R. Combi, Astrophys. J. 818, 199 (2016).
G. L. Betancourt‐Martinez, R. S. Cumbee, and M. A. Leutenegger, Astronom. News 341, 197 (2020).
S. Khalaf and M. Jaleel, Int. J. Sci. Eng. Res. 5, 1231 (2014).
S. Z. Khalaf and K. Abrahim, Iraqi J. Sci. 61, 3417 (2020).
S. Z. Khalaf, K. Abrahim, and I. K. Akeab, Iraqi J. Phys. 18, 21 (2020).
M. J. Weber, Handbook of Laser Wavelengths. (Berkeley, California, CRC press, 2018).
T. Cravens, Science 296, 1042 (2002).
R. Bischoff and M. Mugrauer, Astronom. News 342, 833 (2021).
H. Kobayashi, H. Kimura, and S. Yamamoto, Astro. Astrophys. 550, A72 (2013).
J. Greenwood, I. Williams, S. Smith, and A. Chutjian, Astrophys. J. 533, L175 (2000).
I. Pitcairn, Appl. Earth Sci. 120, 31 (2011).
R. Antoine, Nanomaterials 10, 377 (2020).
G. R. Harrison, Massachusetts Institute of Technology Wavelength Tables: Wavelengths by element. Vol. 1. (Massachusetts, USA, MIT Press, 1969).
B. Ganse, The Spacefarer's Handbook: Science and Life Beyond Earth. 1st Ed. (Berlin, Heidelberg, Springer 2020).
S. Benseguane, A. Guilbert-Lepoutre, J. Lasue, S. Besse, C. Leyrat, A. Beth, M. C. Sitjà, B. Grieger, and M. T. Capria, Astro. Astrophys. 668, A132 (2022).
S. Fornasier, H. Hoang, M. Fulle, E. Quirico, and M. Ciarniello, Astro. Astrophys. 672, A136 (2023).
B. J. Davidsson, F. P. Schloerb, S. Fornasier, N. Oklay, P. J. Gutiérrez, B. J. Buratti, A. B. Chmielewski, S. Gulkis, M. D. Hofstadter, and H. U. Keller, Mon. Noti. Roy. Astronom. Soci. 516, 6009 (2022).
B. J. Davidsson, N. H. Samarasinha, D. Farnocchia, and P. J. Gutiérrez, Mon. Noti. Roy. Astronom. Soci. 509, 3065 (2022).
M. Pfeifer, J. Agarwal, and M. Schröter, Astro. Astrophys. 659, A171 (2022).
M. Gargaud and R. Amils, Encyclopedia of Astrobiology. Vol. 1. (Floirac, France, Springer Science and Business Media, 2011).
M. J. Burchell and E. Johnson, Mon. Not. Roy. Astronom. Soci. 360, 769 (2005).
P. D. Feldman, S. R. Mccandliss, M. Route, H. A. Weaver, M. F. A'hearn, M. J. Belton, and K. J. Meech, Icarus 191, 276 (2007).
G. Milani, G. M. Szabó, G. Sostero, R. Trabatti, R. Ligustri, M. Nicolini, M. Facchini, D. Tirelli, D. Carosati, and C. Vinante, Icarus 191, 517 (2007).
E. Drobyshevski, E. Kumzerova, and A. Schmidt, Astronom. Astrophys. Transac. 26, 251 (2007).
S. I. Ipatov and M. F. A’hearn, Mon. Noti. Roy. Astronom. Soci. 414, 76 (2011).
S. Yamamoto, H. Kimura, E. Zubko, H. Kobayashi, K. Wada, M. Ishiguro, and T. Matsui, Astrophys. J. 673, L199 (2008).
A. L. Cochran, E. S. Barker, M. D. Caballero, and J. Györgey-Ries, Icarus 199, 119 (2009).
L. Kolokolova, L. Nagdimunov, M. A’hearn, A. King, and M. Wolff, Planet. Sp. Sci. 133, 76 (2016).
L. Nagdimunov, L. Kolokolova, M. Wolff, M. F. A’hearn, and T. L. Farnham, Planet. Sp. Sci. 100, 73 (2014).
W. M. Jackson, X. Yang, X. Shi, and A. L. Cochran, Astrophys. J. 698, 1609 (2009).
S. I. Ipatov and M. F. A'hearn, Proce. Int. Astronom. Un. 5, 317 (2009).
M. Ádámkovics, I. De Pater, and H. Spinrad, Astrophys. Sp. Sci. 342, 309 (2012).