Optical Emission Spectroscopy of Zinc Oxide Doped Nickel Oxide to Calculate Plasma Parameters Using the Boltzmann Plot Method
Main Article Content
Abstract
The study used the optical emission spectroscopy method to present the effect of changing doping ratios and laser energy on plasma parameters. Plasma spectra were acquired across energy levels by zinc oxide combined with nickel oxide (ZnOX: NiO1-X) at x = 0.3, 0.5, and 0.7. The analysis of these airborne mixtures was carried out through the application of spectroscopy. The electron temperature results indicated that the range for x=0.3 was 0.446-0.491 eV, for x=0.5 was 0.470-0.486 eV, and for x=0.7 it was 0.474-0.489 eV. Differences in electron temperatures between compositions can lead to new technological applications and comprehension of physical phenomena. It was found that when the proportion of doping was increased, the intensities of the spectral lines, electron temperature (Te), Debye number (ND), and Debye length (λD) increased. In contrast, electron density (ne) and plasma frequency (fp) decreased with the increase of the laser energy; doped material's emission lines occurred more frequently in the mixed material. With these results, we obtain the best conditions for solar cell applications for zinc oxide elements combined with nickel oxide.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, Journal of the Brazilian Chemical Society 18, 463 (2007). https://doi.org/10.1590/S0103-50532007000300002.
2. J. D. Pedarnig, S. Trautner, S. Grünberger, N. Giannakaris, S. Eschlböck-Fuchs, and J. Hofstadler, Appl. Sci. 11, 9274 (2021). https://doi.org/10.3390/app11199274.
3. C. Fabre, Spectrochim. Acta Part B Atom. Spect. 166, 105799 (2020). https://doi.org/10.1016/j.sab.2020.105799.
4. A. Botto, B. Campanella, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, F. Poggialini, and V. Palleschi, J. Analyt. Atom. Spectrom. 34, 81 (2019). https://doi.org/10.1039/c8ja00319j.
5. D. A. Gonçalves, G. S. Senesi, and G. Nicolodelli, Tren. Envir. Analyt. Chem. 30, e00121 (2021). https://doi.org/10.1016/j.teac.2021.e00121.
6. A. Królicka, A. Maj, and G. Łój, Materials 16, 6641 (2023). https://doi.org/ 10.3390/ma16206641.
7. S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, W. Husinsky, and K. Whitmore, J. Optic. Soci. America B 37, 2878 (2020). https://doi.org/10.1364/josab.394695.
8. R. Duclous, V. Tikhonchuk, L. Gremillet, B. Martinez, T. Leroy, P.-E. Masson Laborde, J.-C. Pain, and A. Decoster, Phys. Plas. 31, 022904 (2024). https://doi.org/10.1063/5.0162336.
9. N. A. Shepelin, Z. P. Tehrani, N. Ohannessian, C. W. Schneider, D. Pergolesi, and T. Lippert, Chem. Soci. Rev. 52, 2294 (2023). https://doi.org/ 10.1039/D2CS00938B.
10. S. A. K. Raheem, S. A. A.-H. Hatif, and A. H. Ali, J. Univer. Babyl. Pure Appl. Sci. 31, 147 (2023). https://doi.org/10.29196/jubpas.v31i3.4836.
11. D. R. Bates and B. Bederson, Advances in Atomic and Molecular Physics (USA, Academic Press, 1985).
12. A. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Spectrochim. Acta Part B Atom. Spectr. 60, 1573 (2005). https://doi.org/10.1016/j.sab.2005.10.011.
13. G. A. Alharshan, C. Eke, and M. Al-Buriahi, Rad. Phys. Chem. 193, 109938 (2022). https://doi.org/10.1016/j.radphyschem.2021.109938.
14. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, J. Quant. Spectr. Rad. Trans. 75, 747 (2002). https://doi.org/10.1016/S0022-4073(02)00040-7.
15. M. P. Polek, M. C. Phillips, F. N. Beg, and S. S. Harilal, AIP Advances 14, 025043 (2024). https://doi.org/10.1063/5.0190522.
16. K. A. Aadim, Iraqi J. Phys. 16, 1 (2018). https://doi.org/10.30723/ijp.v16i38.3.
17. E. Gao, R. Wei, D. Zhang, Z. Zhu, Q. Gao, and B. Li, J. Analyt. Atom. Spectr. 38, 1116 (2023). https://doi.org/10.1039/d3ja00044c.
18. T. Völker and I. B. Gornushkin, J. Quant. Spectr. Rad. Trans. 310, 108741 (2023). https://doi.org/10.1016/j.jqsrt.2023.108741.
19. E. Alonso-Monsalve and D. I. Kaiser, Phys. Rev. D 108, 125010 (2023). https://doi.org/10.1103/PhysRevD.108.125010.
20. N. K. Abdaalameer, S. Mazhir, and K. A. Aadim, Chalcogen. Lett. 18, 405 (2021). https://doi.org/10.15251/cl.2021.187.405.
21. A. S. Wasfi, H. R. Humud, and M. E. Ismael, Iraqi J. Phys. 13, 14 (2015). https://doi.org/10.30723/ijp.v13i27.259.
22. A. A. Abdullah, S. J. Mohammed, and G. H. Mohammed, Tikrit J. Pure Sci. 24, 63 (2019). https://doi.org/10.25130/tjps.v24i2.354.
23. R. S. Mohammed, K. A. Aadim, and K. A. Ahmed, Iraqi J. Sci. 63, 3711 (2022). https://doi.org/10.24996/ijs.2022.63.9.5.
24. H. S. Hachim and K. A. Aadim, Iraqi J. Sci. 63, 5270 (2022). https://doi.org/10.24996/ijs.2022.63.12.16.