Optical Emission Spectroscopy of Zinc Oxide Doped Nickel Oxide to Calculate Plasma Parameters Using the Boltzmann Plot Method

Main Article Content

Muna A. Issa
https://orcid.org/0009-0003-8276-007X
Kadhim A. Aadim

Abstract

The study used the optical emission spectroscopy method to present the effect of changing doping ratios and laser energy on plasma parameters. Plasma spectra were acquired across energy levels by zinc oxide combined with nickel oxide (ZnOX: NiO1-X) at x = 0.3, 0.5, and 0.7. The analysis of these airborne mixtures was carried out through the application of spectroscopy. The electron temperature results indicated that the range for x=0.3 was 0.446-0.491 eV, for x=0.5 was 0.470-0.486 eV, and for x=0.7 it was 0.474-0.489 eV. Differences in electron temperatures between compositions can lead to new technological applications and comprehension of physical phenomena. It was found that when the proportion of doping was increased, the intensities of the spectral lines, electron temperature (Te), Debye number (ND), and Debye length (λD) increased. In contrast, electron density (ne) and plasma frequency (fp) decreased with the increase of the laser energy; doped material's emission lines occurred more frequently in the mixed material. With these results, we obtain the best conditions for solar cell applications for zinc oxide elements combined with nickel oxide. 

Received: Jun. 16, 2024 Revised: May, 27, 2024 Accepted: Jul. 08,  2024  

Article Details

Section

Articles

How to Cite

1.
Issa MA, Aadim KA. Optical Emission Spectroscopy of Zinc Oxide Doped Nickel Oxide to Calculate Plasma Parameters Using the Boltzmann Plot Method. IJP [Internet]. 2025 Jun. 1 [cited 2025 Jul. 4];23(2):118-27. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1230

References

1. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, Journal of the Brazilian Chemical Society 18, 463 (2007). https://doi.org/10.1590/S0103-50532007000300002.

2. J. D. Pedarnig, S. Trautner, S. Grünberger, N. Giannakaris, S. Eschlböck-Fuchs, and J. Hofstadler, Appl. Sci. 11, 9274 (2021). https://doi.org/10.3390/app11199274.

3. C. Fabre, Spectrochim. Acta Part B Atom. Spect. 166, 105799 (2020). https://doi.org/10.1016/j.sab.2020.105799.

4. A. Botto, B. Campanella, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, F. Poggialini, and V. Palleschi, J. Analyt. Atom. Spectrom. 34, 81 (2019). https://doi.org/10.1039/c8ja00319j.

5. D. A. Gonçalves, G. S. Senesi, and G. Nicolodelli, Tren. Envir. Analyt. Chem. 30, e00121 (2021). https://doi.org/10.1016/j.teac.2021.e00121.

6. A. Królicka, A. Maj, and G. Łój, Materials 16, 6641 (2023). https://doi.org/ 10.3390/ma16206641.

7. S. Bashir, M. S. Rafique, C. S. Nathala, A. A. Ajami, W. Husinsky, and K. Whitmore, J. Optic. Soci. America B 37, 2878 (2020). https://doi.org/10.1364/josab.394695.

8. R. Duclous, V. Tikhonchuk, L. Gremillet, B. Martinez, T. Leroy, P.-E. Masson Laborde, J.-C. Pain, and A. Decoster, Phys. Plas. 31, 022904 (2024). https://doi.org/10.1063/5.0162336.

9. N. A. Shepelin, Z. P. Tehrani, N. Ohannessian, C. W. Schneider, D. Pergolesi, and T. Lippert, Chem. Soci. Rev. 52, 2294 (2023). https://doi.org/ 10.1039/D2CS00938B.

10. S. A. K. Raheem, S. A. A.-H. Hatif, and A. H. Ali, J. Univer. Babyl. Pure Appl. Sci. 31, 147 (2023). https://doi.org/10.29196/jubpas.v31i3.4836.

11. D. R. Bates and B. Bederson, Advances in Atomic and Molecular Physics (USA, Academic Press, 1985).

12. A. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Spectrochim. Acta Part B Atom. Spectr. 60, 1573 (2005). https://doi.org/10.1016/j.sab.2005.10.011.

13. G. A. Alharshan, C. Eke, and M. Al-Buriahi, Rad. Phys. Chem. 193, 109938 (2022). https://doi.org/10.1016/j.radphyschem.2021.109938.

14. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, J. Quant. Spectr. Rad. Trans. 75, 747 (2002). https://doi.org/10.1016/S0022-4073(02)00040-7.

15. M. P. Polek, M. C. Phillips, F. N. Beg, and S. S. Harilal, AIP Advances 14, 025043 (2024). https://doi.org/10.1063/5.0190522.

16. K. A. Aadim, Iraqi J. Phys. 16, 1 (2018). https://doi.org/10.30723/ijp.v16i38.3.

17. E. Gao, R. Wei, D. Zhang, Z. Zhu, Q. Gao, and B. Li, J. Analyt. Atom. Spectr. 38, 1116 (2023). https://doi.org/10.1039/d3ja00044c.

18. T. Völker and I. B. Gornushkin, J. Quant. Spectr. Rad. Trans. 310, 108741 (2023). https://doi.org/10.1016/j.jqsrt.2023.108741.

19. E. Alonso-Monsalve and D. I. Kaiser, Phys. Rev. D 108, 125010 (2023). https://doi.org/10.1103/PhysRevD.108.125010.

20. N. K. Abdaalameer, S. Mazhir, and K. A. Aadim, Chalcogen. Lett. 18, 405 (2021). https://doi.org/10.15251/cl.2021.187.405.

21. A. S. Wasfi, H. R. Humud, and M. E. Ismael, Iraqi J. Phys. 13, 14 (2015). https://doi.org/10.30723/ijp.v13i27.259.

22. A. A. Abdullah, S. J. Mohammed, and G. H. Mohammed, Tikrit J. Pure Sci. 24, 63 (2019). https://doi.org/10.25130/tjps.v24i2.354.

23. R. S. Mohammed, K. A. Aadim, and K. A. Ahmed, Iraqi J. Sci. 63, 3711 (2022). https://doi.org/10.24996/ijs.2022.63.9.5.

24. H. S. Hachim and K. A. Aadim, Iraqi J. Sci. 63, 5270 (2022). https://doi.org/10.24996/ijs.2022.63.12.16.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>