Studying the Effect of Non-Thermal Plasma on the Structure, Optical, and Humidity Sensor Properties of Cr:Se Thin Films
Main Article Content
Abstract
Over the past few years, there has been a significant focus on studying the synthesis and applications of metal nanoparticles. These tiny particles possess distinct properties that set them apart from bulk metals. The liquid for Cr:Se core-shell nanoparticles was made using the plasma jets method and turned into thin films that are 158.9 nm thick through chemical spray pyrolysis. The nanothin films were analyzed using X-ray diffraction (XRD), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). This study looks at the structure and light properties of core-shell nanoparticles made with a chromium to selenium (Cr:Se) ratio of 6:4. The XRD patterns confirmed the crystalline nature of the nanoparticles for the polycrystalline ratio (6:4). When the best thin film, which is well-crystallized, is exposed to non-thermal plasma (dielectric barrier discharges (DBD)), the XRD shows important changes, suggesting it is becoming more crystalline. Tauc plots show that the direct bandgap energies change in a non-linear way, with a notable increase in energy from 2.77 to 3.88 eV. Transmission electron microscopy analysis highlights improved nanoparticle distribution and uniformity. These findings point out the importance of Cr:Se nanoparticles for advanced optoelectronic and sensing technologies, as well as various technological applications.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. A. Zaleska-Medynska, M. Marchelek, M. Diak, and E. Grabowska, Adv. Coll. Inter. Sci. 229, 80 (2016). DOI: 10.1016/j.cis.2015.12.008.
2. B. R. Cuenya, Thin Sol. Fil. 518, 3127 (2010). DOI: 10.1016/j.tsf.2010.01.018.
3. G. Merga, R. Wilson, G. Lynn, B. H. Milosavljevic, and D. Meisel, J. Phys. Chem. C 111, 12220 (2007). DOI: 10.1021/jp074257w.
4. A. S. M. Aljaloud, A. F. Qasrawi, and L. H. K. Alfhaid, Optik 292, 171395 (2023). DOI: 10.1016/j.ijleo.2023.171395.
5. J. Wang, Y. Xiang, W. Zhang, Y. Zhang, Q. Zhao, J. Li, and G. Liu, Fuel 351, 128827 (2023). DOI: 10.1016/j.fuel.2023.128827.
6. A. Sobhani and M. Salavati-Niasari, J. Nanostruct. 7, 141 (2017). DOI: 10.22052/jns.2017.02.008.
7. A. Abdelouas, W. L. Gong, W. Lutze, J. A. Shelnutt, R. Franco, and I. Moura, Chem. Mat. 12, 1510 (2000). DOI: 10.1021/cm990763p.
8. M. Z. Liu, S. Y. Zhang, Y. H. Shen, and M. L. Zhang, Chinese Chem. Lett. 15, 1249 (2004).
9. Y. Shin, J. M. Blackwood, I.-T. Bae, B. W. Arey, and G. J. Exarhos, Mat. Lett. 61, 4297 (2007). DOI: 10.1016/j.matlet.2007.01.091.
10. V. Kuzmiak, V. Kolinsky, and K. Zdansky, in 2009 11th International Conference on Transparent Optical Networks (Ponta Delgada, Portugal IEEE, 2009). p. 1.
11. U. Hohenester and A. Trugler, IEEE J. Select. Top. Quant. Elect. 14, 1430 (2008). DOI: 10.1109/JSTQE.2008.2007918.
12. W. D. Rappaport, G. C. Hunter, R. Allen, S. Lick, A. Halldorsson, T. Chvapil, M. Holcomb, and M. Chvapil, American J. Surg. 160, 618 (1990). DOI: 10.1016/S0002-9610(05)80757-3.
13. M. S. Mohammed, B. H. Adil, A. S. Obaid, and A. M. Al-Shammari, Mat. Sci. For. 1050, 51 (2022). DOI: 10.4028/www.scientific.net/MSF.1050.51.
14. A. Dehno Khalaji, Nanochem. Res. 6, 18 (2021). DOI: 10.22036/ncr.2021.01.003.
15. F. Jiang, W. Cai, and G. Tan, Nanoscal. Res. Lett. 12, 401 (2017). DOI: 10.1186/s11671-017-2165-y.
16. Z. N. Abdul-Ameer, Ibn AL-Haitham J. Pure Appl. Sci. 32, 1 (2019). DOI: 10.30526/ 32.1.1974.
17. S. El-Nahas, M. S. A. El-Sadek, H. M. Salman, and M. M. Elkady, Mat. Chem. Phys. 258, 123885 (2021). DOI: 10.1016/j.matchemphys.2020.123885.
18. M. O. Dawood, S. S. Chiad, A. J. Ghazai, N. F. Habubi, and O. M. Abdulmunem, AIP Conf. Proc. 2213, 020102 (2020). DOI: 10.1063/5.0000136.
19. A. L. Andrady, S. H. Hamid, X. Hu, and A. Torikai, J. Photochem. Photobio. B Bio. 46, 96 (1998). DOI: 10.1016/S1011-1344(98)00188-2.
20. J. Tauc, Mat. Res. Bullet. 3, 37 (1968). DOI: 10.1016/0025-5408(68)90023-8.
21. A. Niema, E. Abbas, and N. Abdalameer, Dig. J. Nanomat. Biostruct. 16, 1479 (2021). DOI: 10.15251/djnb.2021.164.1479.
22. N. Agmon, Chem. Phys. Lett. 244, 456 (1995). DOI: 10.1016/0009-2614(95)00905-J.
23. R. Muneeb Ur, G. Shah, A. Ullah, R. Zia Ur, M. Arshad, R. Khan, Zulfiqar, B. Ullah, and I. Ahmad, J. Mat. Sci. Mat. Elect. 31, 3557 (2020). DOI: 10.1007/s10854-020-02904-y.
24. C. Ma, A. Nikiforov, D. Hegemann, N. De Geyter, R. Morent, and K. Ostrikov, Int. Mat. Rev. 68, 82 (2023). DOI: 10.1080/09506608.2022.2047420.
25. M. Avram, A. M. Avram, A. Bragaru, A. Ghiu, and C. Iliescu, Romanian J. Info. Sci. Tech. 11, 409 (2008). DOI: 10.1109/SMICND.2007.4519654.
26. W. Li, J. Liu, C. Ding, G. Bai, J. Xu, Q. Ren, and J. Li Fabrication of Ordered SnO2 Nanostructures with Enhanced Humidity Sensing Performance. Sensors, 2017. 17, 2392 DOI: 10.3390/s17102392.
27. I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, and V. Rehacek, Sens. Actuat. B Chem. 103, 300 (2004). DOI: 10.1016/j.snb.2004.04.109.