Study of the Sensitivity of Carbon Quantum Dots for NO2 Gas Sensor and improve it using Graphene
Main Article Content
Abstract
Gas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time.
Interestingly, the combination was highly responsive. The quantum dots on glass substrates could detect NO2 gas at the abovementioned temperatures. Experimental evidence showed that the gas sensor can only detect graphene at low temperatures.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
R. K. Goyal, Nanomaterials and Nanocomposites: Synthesis, Properties, Characterization Techniques, and Applications (Boca Raton, CRC Press, 2017).
J. Hodgkinson, J. Saffell, J. Luff, J. Shaw, J. Ramsden, C. Huggins, R. Bogue, and R. Carline, Nanotech. Percep. 5, 71 (2009). DOI: 10.56801/nano-ntp.v5i1.33.
W. Wang, Progresses in Chemical Sensor. 2016, IntechOpen: Rijeka.
L. A. Abdullah, O. A. Ibrahim, and O. A. Ali, Mat. Lett. 377, 137534 (2024). DOI: 10.1016/j.matlet.2024.137534.
G. Sinha, Advances in Modern Sensors: Physics, Design, Simulation and Applications (London, UK, IOP Publishing, 2020).
U. Resch-Genger, Standardization and Quality Assurance in Fluorescence Measurements I: Techniques. 2009, Springer Berlin, Heidelberg: Berlin, Germany.
D. Degler, Sensors 18, 3544 (2018). DOI: 10.3390/s18103544.
H. Bai and G. Shi, Sensors 7, 267 (2007). DOI: 10.3390/s7030267.
E. Llobet, Sens. Actuat. B Chem. 179, 32 (2013). DOI: 10.1016/j.snb.2012.11.014.
M. M. Faris and A. K. Ayal, Iraqi J. Phys. 21, 1 (2023). DOI: 10.30723/ijp.v21i4.1150.
T. A. Hassan, Ph.D Thesis, University of Baghdad, 2013.
D. R. Patil, L. A. Patil, and D. P. Amalnerkar, Bull. Mat. Sci. 30, 553 (2007). DOI: 10.1007/s12034-007-0086-6.
Q. G. Hial, Ph.D Thesis, University of Baghdad, 2011.
E. R. Beach, Ph. D Thesis, The Ohio State University, 2009.
E. X. Perez, Ph. D Thesis, Tarragona, 2007.
A. S. Zamil and A. N. Naje, J. Opt. 53, 3486 (2024). DOI: 10.1007/s12596-023-01481-7.
O. A. Ali and S. S. M. Al-Awadi, Iraqi J. Sci. 62, 1873 (2021). DOI: 10.24996/ijs.2021.62.6.13.
N. A. Abd and O. A. Ibrahim, Iraqi J. Phys. 22, 1 (2024). DOI: 10.30723/ijp.v22i1.1214.
D. R. Cooper, B. D’anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, Int. Schol. Res. Not. 2012, 501686 (2012). DOI: 10.5402/2012/501686.
A. F. Sultan, Iraqi J. Phys. 14, 150 (2016).
C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors 10, 2088 (2010). DOI: 10.3390/s100302088.
L. Xuekun, Y. Minfeng, H. Hui, and S. R. Rodney, Nanotechnology 10, 269 (1999). DOI: 10.1088/0957-4484/10/3/308.
L. A. Essa and R. K. Jamal, J. Opt. 53, 1574 (2024). DOI: 10.1007/s12596-023-01328-1.
N. A. Abd and O. A. Ibrahim, J. Opt. 53, 2757 (2024). DOI: 10.1007/s12596-023-01462-w.
N. S. Sultan and O. A. Ali, J. Opt., (2024). DOI: 10.1007/s12596-024-02000-y.
D. Jung, M. Han, and G. S. Lee, ACS Appl. Mat. Inter. 7, 3050 (2015). DOI: 10.1021/am506578j.
S. Abdullahi, A. Aydarous, and N. Salah, J. Lum. 242, 118588 (2022). DOI: 10.1016/j.jlumin.2021.118588.
C. Subramaniam, Y. Yasuda, S. Takeya, S. Ata, A. Nishizawa, D. Futaba, T. Yamada, and K. Hata, Nanoscale 6, 2669 (2014). DOI: 10.1039/C3NR05290G.