Synthesis and Anti-Corrosion Resistance of Polyacrylonitrile-Based Nanocomposites with Moringa-Extracted Nickel and Vanadium Oxide Nanoparticles

Main Article Content

Sarah Saadi Ahmed
Nada Mutter Abbass

Abstract

This study aims to enhance the corrosion resistance of carbon steel (45 alloys) in saline water (3.5% NaCl) by applying a polymer nanocomposite coating. The nanocomposite was synthesized by integrating nickel oxide (NiO) and vanadium oxide (V₂O5) nanoparticles, produced via a green synthesis method using moringa extract, into a polyacrylonitrile (PA) matrix. The coating's performance was evaluated across a range of temperatures: 293, 303, 313, and 323 K, achieving an inhibition efficiency of up to 89% at 303 K. The created nanocomposites were carefully examined using various testing methods, such as atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). AFM analysis revealed particle sizes of 44.5 nm for NiO and 54.47 nm for V₂O5, while TEM images indicated nonhomogeneous spherical morphologies. FT-IR and XRD showed that the nanoparticles were successfully added to the polymer, and TGA/DSC tests proved that the nanocomposites can withstand high temperatures. The results indicate that these nanocomposites could be very useful as strong corrosion protectors, improving the safety of carbon steel in harsh conditions.

Received:Sep. 10, 2024 Revised:   Jan. 02, 2025 Accepted: Jan. 17, 2025

Article Details

Section

Articles

How to Cite

1.
Ahmed SS, Mutter Abbass N. Synthesis and Anti-Corrosion Resistance of Polyacrylonitrile-Based Nanocomposites with Moringa-Extracted Nickel and Vanadium Oxide Nanoparticles. IJP [Internet]. 2025 Jun. 1 [cited 2025 Jun. 25];23(2):147-62. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1373

References

1. M. Jamzad and M. Kamari Bidkorpeh, J. Nanostruct. Chem., 10, 193 (2020). DOI: https://doi.org/10.1007/s40097-020-00341-1

2. N. A. Khudhair, A. T. Bader, M. I. Ali, and M. Husseini, AIP Conf. Proc. 2290, 030014 (2020). DOI: https://doi.org/10.1063/5.0027443

3. N. A. Khudhair and A. M. A. Al-Sammarraie, Iraqi J. Sci., 60, 1898 (2019). DOI: https://doi.org/10.24996/ijs.2019.60.9.2.

4. C. Prasad, H. Tang, and W. Liu, J. Nanostruct. Chem., 8, 393 (2018). DOI: https://doi.org/10.1007/s40097-018-0289-y

5. M. D. M. Ali, M. Husseini, and N. A. Khudhair, IOP Conf. Ser.: Earth Environ. Sci. 877, 012007 (2021). DOI: https://doi.org/10.1088/1755-1315/877/1/012007

6. M. AL-Sammarraie, Baghdad Sci. J. 17, 0093 (2020). DOI: http://dx.doi.org/10.21123/bsj.2020.17.1.0093

7. Mohammed, R. and H. Almashhadani,. Int. J. Corros. Scale Inhib, 12, 1180 (2023) DOI:https://dx.doi.org/10.17675/2305-6894-2023-12-3-21

8. J. Wang and S. Kaskel, J. Mater. Chem. 22, 23710 (2012). DOI: https://doi.org/10.1039/C2JM34066F.

9. S. Wang, C. Xiao, Y. Xing, H. Xu, and S. Zhang, J. Mater. Chem. A, 3, 15591 (2015). DOI: https://doi.org/10.1039/C5TA03787E

10. M. A. Salam, M. Mokhtar, S. N. Basahel, S. A. Al-Thabaiti, and A. Y.Obaid, J. Alloys Compd., 500, 87 (2010).‏ DOI: https://doi.org/10.1016/j.jallcom.2010.03.217.

11. Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. Wadi, J. Renew. Sust. Energ. Rev. 26, 837 (2013). DOI: https://doi.org/10.1016/j.rser.2013.06.023

12. M. A. Deyab, J. Mol. Liq., 313, 113533 (2020).‏‏ DOI: https://doi.org/10.1016/j.molliq.2020.113533P

13. G. Chala, J. Chem. Rev., 5, 1(2023). DOI: https://doi.org/10.22034/jcr.2023.356745.1184.

14. D. Hall, D. Zanchet, and J. Ugarte, J. Appl. Crystallogr. 33, 1335 (2000). DOI: https://doi.org/10.1107/S0021889800010888

15. B. He, S-J Shuai, J-X Wang, H. He, Atmospheric Environment, 18, 2 (2003). DOI: https://doi.org/10.1016/j.atmosenv.2003.08.029

16. I. Hassan, N. M. Baba, M. E. Benin, and A. H. Labulo, J. Umm Al-Qura Univ. Appl. Sci., 10, 379 (2024).‏ DOI: https://doi.org/10.1007/s43994-023-00106-w

17. M. A. Al-Issa, J. R. Ugal, and M. N. B. Al-Baiati, Baghdad Sci. J. 5, 131 (2008). DOI: https://doi.org/10.21123/bsj.2008.5.1.131-13

18. D. S. Maki, N. K. Nemer, S. M. Uosof, and S. N. Mohi, Iraqi J. Sci., 99 (2019).

19. N. Afsharimani, A. Durán, D. Galusek, and Y. Castro, Nanomaterials, 10, 1050 (2020).‏ DOI: https://doi.org/10.3390/nano10061050

20. Q. Kaddou and K. A. Al-Horani, Baghdad Sci. J. 2, 533 (2021). DOI: https://doi.org/10.21123/bsj.2005.647

21. J. Abdi, M. Izadi, and M. Bozorg, Sci. Rep., 12, 10660 (2022).‏ DOI: https://doi.org/10.1038/s41598-022-14854-y

22. S. W. A. Aldeen, and N. M. Abbass, Chem. Methodol., 7, 81 (2023). DOI: https://doi.org/10.22034/chemm.2023.357626.1598

23. R. Whba, M. S. Su’ait, F. Whba, and A. Ahmad, Journal of Power Scource, 606, 234539 (2024). DOI: https://doi.org/10.1016/j.jpowsour.2024.234539

24. N. Liu, X. Zhang, E. He, W. Zhou, L. Yu, and X. Yan, Appl. Surf. Sci. 568, 150937 (2021). DOI: https://doi.org/10.1016/j.apsusc.2021.150937.

25. Z. Momenzadeh, M. Ashjari, E. Nemati Lay, and M. Paki, Adv. Compos. Mater., 15 (2024). DOI: https://doi.org/10.1080/09243046.2024.2387413

26. D. Ahmed, and B.I. Al-Abdaly, Solid State Technology, 64, 3945-3959 (2021).

27. A.A. Farag, Corrosion Reviews, 38(1): 67 (2020). DOI: https://doi.org/10.1515/corrrev-2019-0011

28. N. Talavera, M. Navarro, A. Sifontes, Y.Díaz, H. Villalobos, G. Niño-Vega, and S.G. Pandalai, Recent research developments in materials science, 10, 89 (2013).

29. Abdul-Zahra, M. A., & Abbass, N. M., Iraqi J. Sci., 65, 623 (2024).‏ DOI: https://doi.org/10.24996/ijs.2024.65.2.4.

30. Z. Z. Almarbd and N. M. Abbass, Chem. Methodol.,, 6, 940 (2022). DOI: https://doi.org/10.22034/chemm.2022.359620.1603.

31. W. Hua, X. Xu, X. Zhang, H. Yan, and J. Zhang, J. Journal of Energy Storage, 56, 105883 (2022). DOI: https://doi.org/10.1016/j.est.2022.105883

Similar Articles

You may also start an advanced similarity search for this article.