Nuclear Structure Study Using Relativistic Mean Field (RMF) Method

Main Article Content

Sahar M. Aldulaimi
Ali A. Alzubadi

Abstract

The current study uses the relativistic mean field approach to investigate the nuclear structure of selected even-even neutron-rich nuclei spanning from the stability line to the neutron drip line. Specifically, the nuclei studied include 16–28O, 30–42Si, 48–60Ca, 56–68Ni, 88–100Kr, 96–122Ru, 140–152Ba, 142–154Sm, and 150–162Er. The relativistic Hartree-Bogoliubov (RHB) method was applied, incorporating effective density-dependent point coupling (DD-PC) and density-dependent meson exchange (DD-ME) interactions. The impact of these interactions was demonstrated through the calculation of various nuclear structure properties, including binding energy (BE), kinetic energy (KE), pairing energy (PE), root mean square (rms) charge radius, two-neutron separation energy (S2n), mass densities (ρm), and triaxial deformation. The calculated results were compared with the available experimental data. It is clear that the RMF approach, particularly with the DD-ME2 and DD-PC1 effective interactions, proved to be a valuable tool for studying nuclear properties near the drip lines and away from stability, providing insights into the behavior of exotic or halo nuclei.

Article Details

Section

Articles

How to Cite

1.
Aldulaimi SM, A. Alzubadi A. Nuclear Structure Study Using Relativistic Mean Field (RMF) Method. IJP [Internet]. 2024 Dec. 1 [cited 2025 Jan. 7];22(4):21-4. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1318

References

G. Gangopadhyay, J. Phys. G Nucl. Par. Phys. 37, 015108 (2010). DOI: 10.1088/0954-3899/37/1/015108.

S. Marcos, R. J. Lombard, and J. Mareš, Phys. Rev. C 57, 1178 (1998). DOI: 10.1103/PhysRevC.57.1178.

J. S. Wang, W. Q. Shen, Z. Y. Zhu, J. Feng, Z. Y. Guo, W. L. Zhan, G. Q. Xiao, X. Z. Cai, D. Q. Fang, H. Y. Zhang, and Y. G. Ma, Nucl. Phys. A 691, 618 (2001). DOI: 10.1016/S0375-9474(01)00591-7.

B. Yaghmaei, A. A. Mehmandoost-Khajeh-Dad, and V. Dehghani, Nucl. Phys. A 1017, 122353 (2022). DOI: 10.1016/j.nuclphysa.2021.122353.

D. S. Golubev and A. D. Zaikin, Phys. Rev. B 62, 14061 (2000). DOI: 10.1103/PhysRevB.62.14061.

J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (Verlag Berlin Heidelberg, Springer Science & Business Media, 2007).

H. Flocard, P. Quentin, A. K. Kerman, and D. Vautherin, Nucl. Phys. A 203, 433 (1973). DOI: 10.1016/0375-9474(73)90357-6.

A. A. Alzubadi, Indian Journal of Physics 89, 619 (2015). DOI: 10.1007/s12648-014-0614-3.

G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540 (1997). DOI: 10.1103/PhysRevC.55.540.

M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, and P. Ring, Comp. Phys. Commun. 167, 43 (2005). DOI: 10.1016/j.cpc.2005.01.001.

A. A. Allami and A. A. Alzubadi, Int. J. Mod. Phys. E 29, 2050090 (2020). DOI: 10.1142/s0218301320500901.

W.-H. Long, N. Van Giai, and J. Meng, Phys. Lett. B 640, 150 (2006). DOI: 10.1016/j.physletb.2006.07.064.

W. H. Long, P. Ring, J. Meng, N. Van Giai, and C. A. Bertulani, Phys. Rev. C 81, 031302 (2010). DOI: 10.1103/PhysRevC.81.031302.

J. Meng, Nucl. Phys. A 635, 3 (1998). DOI: 10.1016/S0375-9474(98)00178-X.

T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011). DOI: 10.1016/j.ppnp.2011.01.055.

M. El Adri and M. Oulne, European Phys. J. Plus 135, 268 (2020). DOI: 10.1140/epjp/s13360-020-00277-z.

T. Nikšić, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66, 024306 (2002). DOI: 10.1103/PhysRevC.66.024306.

H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 85, 024314 (2012). DOI: 10.1103/PhysRevC.85.024314.

C. Fuchs, H. Lenske, and H. H. Wolter, Phys. Rev. C 52, 3043 (1995). DOI: 10.1103/PhysRevC.52.3043.

M. Piarulli and I. Tews, Front. Phys. 7, 245 (2020). DOI: 10.3389/fphy.2019.00245.

S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999). DOI: 10.1016/S0375-9474(99)00310-3.

V. Kumar, P. Kumar, V. Thakur, S. Thakur, and S. K. Dhiman, Nucl. Phys. A 1022, 122429 (2022). DOI: 10.1016/j.nuclphysa.2022.122429.

T. Mundo and V. De Souza, Boletim. Soci. de Astro. Brasileira 34, 253 (2023).

H. Hergert, Front. Phys. 8, 1 (2020). DOI: 10.3389/fphy.2020.00379.

T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008). DOI: 10.1103/PhysRevC.78.034318.

B. N. Laboratory and N. D. S. International Atomic Energy Agency. National Nuclear Data Center; https://www.nndc.bnl.gov/.

I. Angeli and K. P. Marinova, Atom. Data Nucl. Data Tables 99, 69 (2013). DOI: 10.1016/j.adt.2011.12.006.

Similar Articles

You may also start an advanced similarity search for this article.