Fabrication of Different Types of Photodetectors Based on Carbon Quantum Dots/Alq3 Organic Material

Main Article Content

Mina Mohammed Jawad
Lamees A. Abdullah
https://orcid.org/0000-0002-0778-7411

Abstract

In this work, the properties of the photodetector were improved by using carbon quantum dots (CQDs) and tris (8-hydroxyquinoline) aluminium (III) (Alq3) polymer when deposited on glass and silicon substrates. CQDs were prepared using an electrochemical method. Two methods of deposition were used; the first was drop casting, and the other was spin coating. The structural, electrical, and optical properties were studied. Measurements were made of the manufactured photoconductive detector's current-voltage (I–V) properties, photocurrent gain, response time, and quantum efficiency, responsivity. The constructed detector's performance was measured without light and using a 250-watt tungsten lamp, whose wavelength range was between 500 and 800 nm. The results showed that the best photodetector was when carbon quantum dots were used with Alq3 deposited on a silicon substrate using the drop-casting method (CQD:Alq3/Si). It was observed that the best gain, fastest rise, fall, and response times were 7.97, 0.98, 1.1, and 0.34 s, respectively.

Article Details

Section

Articles

How to Cite

1.
Mohammed Jawad M, A. Abdullah L. Fabrication of Different Types of Photodetectors Based on Carbon Quantum Dots/Alq3 Organic Material. IJP [Internet]. 2024 Dec. 1 [cited 2025 Jan. 19];22(4):11-20. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1272

References

Z. Zhao, J. Liu, Y. Liu, and N. Zhu, J. Semicond. 38, 121001 (2017). DOI: 10.1088/1674-4926/38/12/121001.

S. K. Batabyal, B. Pradhan, K. Mohanta, R. R. Bhattacharjee, and A. Banerjee, Carbon Quantum Dots for Sustainable Energy and Optoelectronics (Cambridge, US, Elsevier, 2023).

F. Huang, F. Jia, C. Cai, Z. Xu, C. Wu, Y. Ma, G. Fei, and M. Wang, Sci.Rep. 6, 28943 (2016). DOI: 10.1038/srep28943.

H. Alzahrani, K. Sulaiman, A. Y. Mahmoud, and R. R. Bahabry, Synth. Metals 278, 116830 (2021). DOI: 10.1016/j.synthmet.2021.116830.

S. Youssef, Y. M. El-Batawy, and A. A. Abouelsaood, J. Appl. Phys. 120, 124506 (2016). DOI: 10.1063/1.4963287.

X. H. Nguyen, H. N. Luong, H. A. Pham, N. M. Nguyen, and V. Q. Dang, RSC Advan. 11, 36340 (2021). DOI: 10.1039/D1RA06315D.

J. Liu, Y. Wang, H. Wen, Q. Bao, L. Shen, and L. Ding, Sol. RRL 4, 2000139 (2020). DOI: 10.1002/solr.202000139.

A. Zhai, C. Zhao, D. Pan, S. Zhu, W. Wang, T. Ji, G. Li, R. Wen, Y. Zhang, Y. Hao, and Y. Cui, Nanomaterials 12, 3084 (2022). DOI: 10.3390/nano12173084.

A. H. Mohammed, A. N. Naje, and R. K. Ibrahim, Iraqi J. Sci. 63, 5218 (2022). DOI: 10.24996/ijs.2022.63.12.12.

S. I. Sharhan and I. M. Ibrahim, Iraqi J. Sci. 60, 754 (2019). DOI: 10.24996/ijs.2019.60.4.9.

X. Sheng, C. Yu, V. Malyarchuk, Y.-H. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, Advan. Opt. Mat. 2, 314 (2014). DOI: 10.1002/adom.201300475.

D. Yang and D. Ma, Advan. Opt. Mat. 7, 1800522 (2019). DOI: 10.1002/adom.201800522.

O. Adnan, A. N. Naje, and M. Midhat, Mat. Renew. Sust. Ener. 7, 28 (2018). DOI: 10.1007/s40243-018-0135-7.

M. J. Shahlaa and O. Adnan, Instrum. Exp. Tech. 66, 1106 (2023). DOI: 10.1134/S0020441223050342.

N. S. Hamzah and E. K. Hassan, Int. J. Nanosci. 22, 2350028 (2023). DOI: 10.1142/s0219581x2350028x.

Z. Hassan and L. A. Abdullah, J. Opt. 53, 428 (2024). DOI: 10.1007/s12596-023-01169-y.

P. Gu, Y. Yao, L. Feng, S. Niu, and H. Dong, Polym. Chem. 6, 7933 (2015). DOI: 10.1039/C5PY01373A.

B. Kumar, B. K. Kaushik, and Y. S. Negi, Poly. Rev. 54, 33 (2014). DOI: 10.1080/15583724.2013.848455.

Y. Wang and A. Hu, J. Mater. Chem. C 2, 6921 (2014). DOI: 10.1039/C4TC00988F.

A. Hamid Abd and O. Adnan Ibrahim, Chem. Meth. 6, 823 (2022). DOI: 10.22034/chemm.2022.351559.1575.

K. a. S. Fernando, S. Sahu, Y. Liu, W. K. Lewis, E. A. Guliants, A. Jafariyan, P. Wang, C. E. Bunker, and Y.-P. Sun, ACS Appl. Mat. Inter. 7, 8363 (2015). DOI: 10.1021/acsami.5b00448.

N. A. Abd and O. A. Ibrahim, J. Opt. 53, 2757 (2024). DOI: 10.1007/s12596-023-01462-w.

L. A. Essa and R. K. Jamal, J. Opt. 53, 1574 (2024). DOI: 10.1007/s12596-023-01328-1.

M. M. Jawad and L. A. Abdullah, J. Opt., (2024). DOI: 10.1007/s12596-024-01687-3.

M. S. Mahdi, K. Ibrahim, N. M. Ahmed, A. Kadhim, S. A. Azzez, F. I. Mustafa, and M. Bououdina, Mat. Res. Expr. 4, 105033 (2017). DOI: 10.1088/2053-1591/aa91e4.

M. W. Eesa, Iraqi J. Phys. 14, 129 (2019). DOI: 10.30723/ijp.v14i31.180.

I. M. Ibrahim and A. H. Khalid, Baghdad Sci. J. 15, 0441 (2018). DOI: 10.21123/bsj.2018.15.4.0441.

S. M. Sze, Y. Li, and K. K. Ng, Physics of Semiconductor Devices (Hoboken, New Jersey, John Wiley & Sons, 2021).

Z. H. Ali and L. A. Abdullah, Chem. Meth. 7, 307 (2023). DOI: 10.22034/chemm.2023.379131.1636.

I. a. K. Hamad, Rana Ismael

Raoof, Asmaa Mohmmed Baghdad Sci. J. 16, 1036 (2019). DOI: 10.21123/bsj.2019.16.4(Suppl.).1036.

H. Sadik, W. R. Saleh, N. M. H. Hadi, and N. Kadhum, Iraqi J. Sci. 58, 868 (2022). DOI: 10.24996.ijs.2017.58.2B.11.

C. Li, W. Huang, L. Gao, H. Wang, L. Hu, T. Chen, and H. Zhang, Nanoscale 12, 2201 (2020). DOI: 10.1039/C9NR07799E.

Similar Articles

You may also start an advanced similarity search for this article.