Study of Some Structural and Optical Properties for Synthesized Graphene/Polyaniline/Zns Nanocomposite

Main Article Content

Elaf Kareem Salman
Ghaida Salman Muhammed

Abstract

Hybrid graphene (GR)/ polyaniline (PANI) based composites incorporating zinc sulfide (ZnS) nanoparticles were synthesized using the drop-casting method. The weight percentage of ZnS was varied from 0.01 to 0.05%. The optical, structural, and morphological characteristics of the nanocomposite were examined utilizing  X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopic (AFM), and UV-Vis spectroscopy. The qualities and dimensions of the GR, PANI, and  ZnS NPs and nanoparticle morphology resulting from the nanocomposite process were examined. Utilizing energy dispersive energy X-ray dispersive (EDX), the weight percentage of each element can be verified. The widening sharp peaks in the XRD patterns suggested the creation of a nanocrystalline phase of ZnS with a crystallite size of less than 50 nm. SEM demonstrated the interaction between ZnS nanoparticles and graphene/polyaniline. Surface topography examination using AFM shows that ZnS NPs may be effectively dispersed on top of GR/PANI structures. The ultraviolet-visible absorption spectrum (UV-Vis) showed a small absorption peak at the wavelength of 459.34nm and a broad absorption peak at 652nm.

Article Details

Section

Articles

How to Cite

1.
Salman EK, Muhammed GS. Study of Some Structural and Optical Properties for Synthesized Graphene/Polyaniline/Zns Nanocomposite. IJP [Internet]. 2024 Dec. 1 [cited 2025 Jan. 6];22(4):53-66. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1244

References

A. N. Naje and W. K. Mahmood, IOP Conf. Ser. Mat. Sci. Eng. 454, 012070 (2018). DOI: 10.1088/1757-899X/454/1/012070.

A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S. W. Joo, Nanosc. Res. Lett. 9, 393 (2014). DOI: 10.1186/1556-276X-9-393.

G. Di Francia, B. Alfano, and V. La Ferrara, J. Sen. 2009, 659275 (2009). DOI: 10.1155/2009/659275.

Y. Wang and J. T. W. Yeow, J. Sen. 2009, 493904 (2009). DOI: 10.1155/2009/493904.

S. K. Abbas and A. N. Naje, Nano Hyb. Comp. 30, 1 (2020). DOI: 10.4028/www.scientific.net/NHC.30.1.

W. K. M. a. N. N. Murad M. Kadhim, Design Eng. 2021, 6485 (2021).

C. Wrenn, Occup. H. Saf. 69, 64 (2000).

R. L. N. Chandrakanthi and M. A. Careem, Thin Sol. Fil. 417, 51 (2002). DOI: 10.1016/S0040-6090(02)00600-4.

P. Somani, B. B. Kale, and D. P. Amalnerkar, Synth. Met. 106, 53 (1999). DOI: 10.1016/S0379-6779(99)00109-5.

Y. He, Mat. Chem. Phys. 92, 134 (2005). DOI: 10.1016/j.matchemphys.2005.01.033.

S.-A. Chen, K.-R. Chuang, C.-I. Chao, and H.-T. Lee, Synth. Met. 82, 207 (1996). DOI: 10.1016/S0379-6779(96)03790-3.

A. G. Macdiarmid, L. S. Yang, W. S. Huang, and B. D. Humphrey, Synth. Met. 18, 393 (1987). DOI: 10.1016/0379-6779(87)90911-8.

D. Verma and V. Dutta, Sen. Actuat. B Chem. 134, 373 (2008). DOI: 10.1016/j.snb.2008.05.009.

N. Kumar, L. P. Purohit, and Y. C. Goswami, Phys. E Low-dimen. Syst. Nanostruct. 83, 333 (2016). DOI: 10.1016/j.physe.2016.04.025.

J. Y. Shimano and A. G. Macdiarmid, Synth. Met. 123, 251 (2001). DOI: 10.1016/S0379-6779(01)00293-4.

W. Lyu, M. Yu, J. Feng, and W. Yan, Appl. Surf. Sci. 458, 413 (2018). DOI: 10.1016/j.apsusc.2018.07.074.

S. K. Abbas and A. N. Naje, Iraqi J. Phys. 18, 62 (2020). DOI: 10.30723/ijp.v18i47.579.

R. Mohapatra, J. Kaundal, and Y. Goswami, Chalcogen. Lett. 18, 255 (2021). DOI: 10.15251/CL.2021.185.255.

P. Govindaraj, A. Sokolova, N. Salim, S. Juodkazis, F. K. Fuss, B. Fox, and N. Hameed, Comp. Part B Eng. 226, 109353 (2021). DOI: 10.1016/j.compositesb.2021.109353.

K. M. Abu Hurayra–Lizu, M. W. Bari, F. Gulshan, and M. R. Islam, Heliyon 7, e06983 (2021). DOI: 10.1016/j.heliyon.2021.e06983.

S. Z. Al Sheheri, Z. M. Al-Amshany, Q. A. Al Sulami, N. Y. Tashkandi, M. A. Hussein, and R. M. El-Shishtawy, Desig. Monom. Poly. 22, 8 (2019). DOI: 10.1080/15685551.2019.1565664.

F. B. Kamal Eddin, Y. W. Fen, N. a. S. Omar, J. Y. C. Liew, and W. M. E. M. M. Daniyal, Spectrochim. Acta Part A Molec. Biomoloc. Spect. 263, 120202 (2021). DOI: 10.1016/j.saa.2021.120202.

N. a. S. Omar, Y. W. Fen, I. Ramli, A. R. Sadrolhosseini, J. Abdullah, N. A. Yusof, Y. M. Kamil, and M. A. Mahdi, Polymers 13, 762 (2021). DOI: 10.3390/polym13050762.

F. B. Kamal Eddin and Y. Wing Fen, Sensors 20, 1039 (2020). DOI: 10.3390/s20041039.

N. S. M. Ramdzan, Y. W. Fen, N. a. A. Anas, N. a. S. Omar, and S. Saleviter, Molecules 25, 2548 (2020). DOI: 10.3390/molecules25112548.

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. a. S. Omar, and M. Zulholinda, Optik 185, 351 (2019). DOI: 10.1016/j.ijleo.2019.03.118.

F. B. Kamal Eddin and Y. W. Fen, Molecules 25, 2769 (2020). DOI: 10.3390/molecules25122769.

R. Bisauriya, S. Khandelwal, and Y. C. Goswami, Mat. Today Proce. 47, 6379 (2021). DOI: 10.1016/j.matpr.2021.08.171.

G. Salman, M. Medhat, and A. Muhammed, Australian J. Bas. Appl. Sci. 11, 29 (2017).

F. E. Jorge, L. G. P. Tienne, and M. De Fátima Vieira Marques, Mat. Sci. Eng. B 263, 114851 (2021). DOI: 10.1016/j.mseb.2020.114851.

T. N. J. I. Edison, R. Atchudan, N. Karthik, P. Chandrasekaran, S. Perumal, P. Arunachalam, P. B. Raja, M. G. Sethuraman, and Y. R. Lee, Surf. Coat. Tech. 416, 127150 (2021). DOI: 10.1016/j.surfcoat.2021.127150.

Alamgeer, M. Tahir, M. R. Sarker, S. Ali, Ibraheem, S. Hussian, S. Ali, M. Imran Khan, D. N. Khan, R. Ali, and S. Mohd Said, Polymers 15, 363 (2023). DOI: 10.3390/polym15020363.

A. H. Mohammed, A. N. Naje, and R. K. Ibrahim, Iraqi J. Sci. 63, 5218 (2022). DOI: 10.24996/ijs.2022.63.12.12.

C. Kittel and P. Mceuen, Introduction to Solid State Physics (USA, John Wiley & Sons, 2018).

L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, and V. Kshnyakin, Ukrainian J. Phys. Opt. 14, 15 (2013). DOI: 10.3116/16091833/14/1/15/2013.

I. M. Ali, Iraqi J. Phys. 17, 21 (2019). DOI: 10.20723/ijp.17.40.21-32

M. Parmar, C. Balamurugan, and D.-W. Lee, Sensors 13, 16611 (2013). DOI: 10.3390/s131216611.

B. Zhou, Y.-W. Zhang, C.-S. Liao, C.-H. Yan, L.-Y. Chen, and S.-Y. Wang, J. Mag. Mag. Mat. 280, 327 (2004). DOI: 10.1016/j.jmmm.2004.03.031.

F. M. Ahmed and S. M. Hassan, Iraqi J. Phys. 19, 72 (2021). DOI: 10.30723/ijp.v19i51.652.

N. I. M. Fauzi, Y. W. Fen, J. Abdullah, M. A. Kamarudin, N. a. S. Omar, F. B. K. Eddin, N. S. M. Ramdzan, and W. M. E. M. M. Daniyal, Photonics 9, 300 (2022). DOI: 10.3390/photonics9050300.

H. Gupta, B. L. Choudhary, S. Ahmad, K. P. Tewari, and P. A. Alvi, American Institute of Physics Conference Series (India AIP, 2020). p. 130008.

S. S. H. Al-Mgrs, M. H. Al-Timimi, M. Z. Abdullah, and W. H. Al-Banda, AIP Conf. Proc. 2475, 090018 (2023). DOI: 10.1063/5.0102768.

A. K. M. Al-Sammarraie, J. Glob. Pharm. Tech. 11, 419 (2019).

K. M. Ibrahim, W. R. Saleh, and A. M. A. Al-Sammarraie, Nano Hyb. Comp. 35, 75 (2022). DOI: 10.4028/p-0w806z.

Rohit and J.-J. Huang, Conference on Lasers and Electro-Optics/Europe (CLEO/Europe 2023) and European Quantum Electronics Conference (EQEC 2023) (Munich Optica Publishing Group, 2023). p. ch_15_4.

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, Electrochim. Acta 178, 647 (2015). DOI: 10.1016/j.electacta.2015.08.010.

Similar Articles

You may also start an advanced similarity search for this article.