Theoretical Computation of Electron Density in Laser-Induced Carbon Plasma using Anisimov Model

Main Article Content

Mohammed Alhamadani
https://orcid.org/0000-0002-7395-9840

Abstract

In this work, electron number density was calculated using Matlab program code and the writing algorithm of the program. Electron density was calculated using the Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation, ionization, and recombination within the plasma that may affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons at high distances with the progress of time and at a certain coordinate. The target is carbon (graphite). The results were selected in four dimensions where three of them belong to the spatial coordinates x, y, z and the fourth dimension is the electron density (ne).

Article Details

Section

Articles

Author Biography

Mohammed Alhamadani, Department of Physics/College of Science for Women. University of Baghdad/Baghdad/ Iraq

 

 

 

 

How to Cite

1.
Alhamadani M. Theoretical Computation of Electron Density in Laser-Induced Carbon Plasma using Anisimov Model . IJP [Internet]. 2023 Mar. 1 [cited 2024 Dec. 27];21(1):68-77. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1082

References

M. R. Abdulameer and A. A. Hussain, AIP Conference Proceedings (AIP Publishing LLC, 2019). p. 020001.

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion. Vol. 1. 3rd Ed. (Switzerland, Springer Cham, 2016).

A. Hussein, P. Diwakar, S. Harilal, and A. Hassanein, J. Appl. Phys. 113, 143305 (2013).

R. A. Mohammed, A.-K. H. Ali, and A. A. Kadhim, MINAR 2, 42 (2020).

S. C. John, Thesis, University of Salford, 2008.

A. F. Ahmed, M. R. Abdulameer, M. M. Kadhim, and F. A. Mutlak, Optik 249, 168260 (2022).

K. Bhatti, M. Khaleeq-Ur-Rahman, M. Rafique, K. Chaudhary, and A. Latif, Vacuum 84, 980 (2010).

M. H. Jawad and M. R. Abdulameer, Inter. Acad. J. Sci. Eng. 9, 28 (2022).

S. Harilal, B. O’shay, M. S. Tillack, and M. V. Mathew, J. Appl. Phys. 98, 013306 (2005).

M. Hanif, M. Salik, and M. Baig, J. Mod. Phys. 3, 1663 (2012).

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, Opt. Commun. 431, 120 (2019).

D. A. Gurnett and A. Bhattacharjee, Introduction to Plasma Physics: with Space and Laboratory Applications. (United Kingdom, Cambridge University Press, 2005).

H. Porteanu, S. Kühn, and R. Gesche, J. Appl. Phys. 108, 013301 (2010).

Q. a. A. Murad M. Kadhim, Mohammed R. Abdulameer, Iraqi J. Sci. 63, 2048 (2022).

Q. Xiong, X. P. Lu, Z. H. Jiang, Z. Y. Tang, J. Hu, Z. L. Xiong, and Y. Pan, IEEE Trans. Plasma Sci. 36, 986 (2008).

V. Mohammed R. Abdulameer, Inter. Sci. Cong. Pure, Appl. Tech. Sci. (Minar Congress). 2022: Istanbul, 208.

S. S. Mahdi, K. A. Aadim, and M. A. Khalaf, Bagh. Sci. J. 18, 1328 (2021).

M. Musadiq, N. Amin, Y. Jamil, M. Iqbal, M. A. Naeem, and H. A. Shahzad, Inter. J. Eng. Tech. 2, 32 (2013).

V. Tikhonchuk, Y. Gu, O. Klimo, J. Limpouch, and S. Weber, Matt. Rad. Extrem. 4, 045402 (2019).

V. Tikhonchuk, Nucl. Fus. 59, 032001 (2018).

X. Li, B. Li, J. Liu, Z. Zhu, D. Zhang, Y. Tian, Q. Gao, and Z. Li, Opt. Expr. 27, 5755 (2019).

I. Rehan, M. Khan, R. Muhammad, M. Khan, A. Hafeez, A. Nadeem, and K. Rehan, Arab. J. Sci. Eng. 44, 561 (2019).

A. Fridman, Plasma Chemistry. (United State, Cambridge University Press, 2008).

P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics. 1st Ed. (Boca Raton, CRC press, 2001).

A. A. Hussain, K. R. Aadim, and M. R. Abdulameer, Asian J. Appl. Sci. 2, 151 (2014).

Similar Articles

You may also start an advanced similarity search for this article.