Preparing Mesoporous Alumina as a Delivery System for the Ciprofloxacin Drug using the Microemulsion Method
Main Article Content
Abstract
Two samples of γ–mesoporous alumina (0.3M/m-Al2O3 and 0.5M/m-Al2O3) were prepared using the microemulsion method, with aluminium sulphate serving as the alumina precursor. The raw materials for microemulsion are sodium dodecyl sulphate (SDS) as the surfactant, 1-butanol as a cosurfactant, and n-hexanol as the oil phase. Scanning Electron Microscopy (SEM), BET surface area, BJH porosity of the samples, and their N2 adsorption-desorption isotherms at 77 K. The X-ray diffraction (XRD) and AFM techniques were used to characterize these samples. The results show that the two samples have identical phase structures and perfect indexing to the γ-Al2O3; the 0.3M/m-Al2O3 sample has a larger surface area, 229.18 m2 g-1, pore diameter, 5.59 nm, and pore volume, 0.32 cm3.g-1, than the 0.5M/m-Al2O3 sample. The morphology of the two samples was small spherical particles aggregated in spherical agglomerates, but the 0.3M/m-Al2O3 sample displayed smaller particles than the 0.5M/m-Al2O3 sample; the percentage of aluminium oxide was high, equal to 95.5% and 97.3% by weight for the 0.3M/m-Al2O3 and 0.5M/m-Al2O3, respectively. As a model, the 0.3M/m-Al2O3 sample was used as a carrier for delivering the ciprofloxacin drug. The loading was performed using the impregnation method, while the release was achieved through a dialysis bag with buffer solutions at pH levels of 7.4 and 5.4. The results indicate that the sample can serve as a suitable carrier for the ciprofloxacin drug.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. I. D. G. M. Permana, L. Suhendra, B. A. Harsojuwono, and I. B. W. Gunam, Pakistan J. Analy. & Envir. Chem,. 25, 126 (2024). https://dog.org/10.21743/pjaec/2024.06.12.
2. K. Divya, R. Divyasree, M. Vamsidhar, K. Bhavani, S. B. Bhanja, M. Sudhakar, D. S. Panda, and B. B. Panigrahi, World j. pharm. Pharmac. Sci., 10, 641 (2021). https://dog.org/10.20959/wjpps20214-18643.
3. S. Talegaonkar, A. Azeem, F. J. Ahmad, R. K. Khar, S. A. Pathan, and Z. I. Khan, Rec. pat. drug deliv. Formu., 2, 238 (2008). https://dog.org/10.2174/187221108786241679.
4. N. Kanna, S. Dama, and G. Valavarasu, ChemistrySel., 5, 9214 (2020). https://dog.org/10.1002/slct.202002596.
5. B. Hao and L. Zhong, Adv. Mach. Mate. Sci. Eng. Appl., 24, 110 (2022). https://dog.org/10.3233/ATDE220425.
6. M. B. Bahari, C. R. Mamat, A. A. Jalil, N. S. Hassan, W. Nabgan, H. D. Setiabudi, D. N. Vo, and B. T. P. Thuy, Inter. J. Hydr. Ener., 47, 41507 (2022). https://dog.org/10.1016/j.ijhydene.2021.12.145.
7. S. Sepehri, M. Rezaei, G. Garbarino, and G. Busca, Inter. J. Hydr. Ener., 41, 3456 (2016). https://dog.org/10.1016/j.ijhydene.2015.12.122.
8. Y. Liu, C. Jin, Z. Yang, G. Wu, G. Liu, and Z. Kong, Inter. J. Bio. Macromol., 187, 880 (2021). https://dog.org/10.1016/j.ijbiomac.2021.07.152.
9. M. Saghir, M. A. Umer, A. Ahmed, N. Bint Monir, U. Manzoor, A. Razzaq, L. Xian, K. Mohammad, M. Shahid, and Y. K. Park, Pow. Tech., 383, 84 (2021). https://doi.org/10.1016/j.powtec.2021.01.026.
10. K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, J. Nanop. Rese., 2, 75 (2000). https://doi.org/10.1023/A:1010090115429.
11. D. F. Niero, O. R. K. Montedo, and A. M. Bernardin, Mater. Sci. Eng., 280, 115690 (2022). https://doi.org/10.1016/j.mseb.2022.115690.
12. R. Kavitha and V. Jayaram, Surf. Coat. Tech., 201, 2491 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.022.
13. L. Qu, C. He, Y. Yang, Y. He, and Z. Liu, Mater. Letter., 59, 4034 (2005). https://doi.org/10.1016/j.matlet.2005.07.059.
14. S. Ghosh and M. K. Naskar, RSC Advance., 3, 4207 (2013). https://doi.org/10.1039/C3RA22793F.
15. Z. Wu, Q. Li, D. Feng, P. A. Webley, and D. Zhao, J. Amer. Chem. Soci., 132, 12042 (2010). https://doi.org/10.1021/ja104379a.
16. W. Wu, M. Zhu, and D. Zhang, Micr. Meso. Mater., 260, 9 (2018). https://doi.org/10.1016/j.micromeso.2017.10.017.
17. Q. B. Chang, X. Wang, J. E. Zhou, and Y. Q. Wang, Advan. Mater. Res., 412, 199 (2012). https://doi.org/10.4028/www.scientific.net/AMR.412.199.
18. X. Zhang, F. Zhang, and K. Y. Chan, Mater. Let., 58, 2872 (2004). https://doi.org/10.1016/j.matlet.2004.05.008.
19. M. H. A. Shiraz, M. Rezaei, and F. Meshkani, Inter. J. Hyd. Ene., 41, 6353 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.017.
20. M. Pourmadadi, A. Farokh, E. Rahmani, A. Shamsabadipour, M. M. Eshaghi, A. Rahdar, and L. F. R. Ferreira, J. Drug Deliv. Sci. Tech., 77, 103877 (2022). https://doi.org/10.1016/j.jddst.2022.103877.
21. S. H. Kareem. In IOP Conference Series: Materials Science and Engineering, Karbala, 2020, IOP Publishing, (871, 012020). https://doi.org/10.1088/1757-899X/871/1/012020.
22. E. A. Hussein, In AIP Conference Proceedings, Karbala, 2021, AIP Publishing, (547, 040001), https://doi.org/10.1063/5.0116063.
23. M. A. Sachit and S. H. Kareem, Ibn AL-Haitham J. Pure and Appl. Sci., 37, 345 (2024). https://doi.org/10.30526/37.2.3410.
24. S. K. Dawood and S. H. Kareem, Bagh. Sci. J., 22, 813 (2024). https://doi.org/10.21123/bsj.2024.11137.
25. M. Salvador, G. Gutiérrez, S. Noriega, A. Moyano, M. C. Blanco-López, and M. Matos, Inter. J. molec. Sci., 22, 427 (2021). https://doi.org/10.3390/ijms22010427.
26. A. L. Doadrio, J. M. Sánchez-Montero, J. C. Doadrio, A. J. Salinas, and M. Vallet-Regí, Euro. J. Pharm. Sci., 97, 1 (2017). https://doi.org/10.1016/j.ejps.2016.11.002.
27. N. Kanna, S. Dama, and G. Valavarasu, ChemistrySel., 5, 9214 (2020). https://doi.org/10.1002/slct.202002596.
28. A. B. Mokaizh, In IOP Conference Series: Earth and Environmental Science ,2021, IOP Publishing. (641, 012023). https://doi.org/10.3390/ma15093046.
29. L. Luo, W. Cai, J. Zhou, and Y. Li, J. Hazar. Mater., 318, 452 (2016). https://doi.org/10.1016/j.jhazmat.2016.07.019.
30. Y. Zhang, H. Yang, Q. Liu, and B. Bian, Ene. Tech., 8, 2000165 (2020). https://doi.org/10.1002/ente.202000165.
31. M. A. Sachit and S. H. Kareem, Baghdad Sci. J., 21, 1029 (2024). https://doi.org/10.21123/bsj.2023.8827.
32. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, Pur. Appl. Chem., 87, 1051 (2015). https://doi.org/10.1515/pac-2014-1117.
33. S. N. S. Mohamad, In IOP Conference Series: Materials Science and Engineering, Penang, 2019, IOP Publishing. (701, 012034). https://doi.org/10.1088/1757-899X/701/1/012034.
34. H. H. Al-Moameri, Z. M. Nahi, D. R. Rzaij, and N. T. Al-Sharify, J. Eng. Sust. Devel., 24, 28 (2020). https://doi.org/10.31272/jeasd.24.5.5.
35. M. Tadic, M. Panjan, B. V. Tadic, S. Kralj, and J. Lazovic, Ceram. Inter., 48, 10004 (2022). https://doi.org/10.1016/j.ceramint.2021.12.209.