Employment of Silicon Nitride Films Prepared by DC Reactive Sputtering Technique for Ion Release Applications

Main Article Content

Diyar Ali Taher
https://orcid.org/0000-0001-6084-6794
Mohammed Abdullah Hameed
https://orcid.org/0000-0001-6084-6794

Abstract

In this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both surfaces of a titanium substrate reduced the electrical conductivity of this substrate by 30%. This reduction in the release of ions from the coated metal substrate is attributed to the dielectric properties of the deposited silicon nitride thin films. This result is very important and applicable. This work represents the first attempt in Iraq to study such effects and may represent a good starting point for advanced studies in biomedical engineering.

Article Details

How to Cite
1.
Employment of Silicon Nitride Films Prepared by DC Reactive Sputtering Technique for Ion Release Applications. IJP [Internet]. 2023 Sep. 1 [cited 2024 Apr. 27];21(3):33-40. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1141
Section
Articles

How to Cite

1.
Employment of Silicon Nitride Films Prepared by DC Reactive Sputtering Technique for Ion Release Applications. IJP [Internet]. 2023 Sep. 1 [cited 2024 Apr. 27];21(3):33-40. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1141

References

C. B. Carter and M. G. Norton. 2007, Springer: New York.

S. Sze, J. Appl. Phys. 38, 2951 (1967).

Z. Q. Yao, P. Yang, N. Huang, J. Wang, F. Wen, and Y. Leng, Nuc. Instru. Meth. Phys. Res. Sec. B: Beam Inter. Mat. Atoms 242, 33 (2006).

B. K. Nasser and M. A. Hameed, Nonlin. Opt., Quant. Opt.: Concep. Mod. Opt. 53, 99 (2021).

N. Maluf, Measur. Sci. Tech. 13, 229 (2002).

M. Baraheni and S. Amini, Ceram. Int. 45, 10086 (2019).

T. G. Allen, J. Bullock, X. Yang, A. Javey, and S. De Wolf, Nat. Ener. 4, 914 (2019).

R. B. Heimann, Materials 16, 5142 (2023).

X. Du, S. S. Lee, G. Blugan, and S. J. Ferguson, Int. J. Molec. Sci. 23, 6551 (2022).

P. Martin, Introduction to surface engineering and functionally engineered materials. (Canada, John Wiley & Sons, 2011).

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, J. Appl. Phys. 77, 6534 (1995).

K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, and A. Cao, Materials 10, 884 (2017).

J. Enderle and J. Bronzino, Introduction to Biomedical Engineering. 3rd Ed. (Burlington, USA, Academic Press, 2012).

J. Bronzino and Francis, Medical Devices and Systems. 3rd Ed. (Hartford, Connecticut, U.S.A, CRC Taylor, 2006).

G. S. Sawhney, Fundamentals of Biomedical Engineering. (Daryaganj, New Delhi, New Age International, 2007).

D. You, Y. Jiang, Y. Zhao, W. Guo, and M. Tan, Opt. Mat. 136, 113354 (2023).

R. Shakoury, A. Arman, Ş. Ţălu, D. Dastan, C. Luna, and S. Rezaee, Opt. Quan. Elect. 52, 270 (2020).

X. Jin, J. Kong, X. Zhou, P. Xing, and Y. Zhuang, J. Cleaner Produc. 247, 119163 (2020).

T. G. Aguirre, C. L. Cramer, and D. J. Mitchell, J. Eur. Ceram. Soci. 42, 735 (2022).

F. L. Riley, J. American Ceram. Soci. 83, 245 (2000).

V. Pavarajarn, R. Precharyutasin, and P. Praserthdam, J. American Ceram. Soci. 93, 973 (2010).

A. Šaponjić, S. Ilić, T. Barudzija, A. R. Mihajlović, M. Kokunešoski, and B. Matović, J. Australian Ceram. Soci., 1 (2023).

Z. Gan, C. Wang, and Z. Chen, Surfaces 1, 59 (2018).

N. Koosha, J. Karimi-Sabet, M. A. Moosavian, and Y. Amini, Mat. Sci. Eng.: B 274, 115458 (2021).

J. Zhang, F. Wang, V. B. Shenoy, M. Tang, and J. Lou, Mat. Today 40, 132 (2020).

M. Sabzi, S. Mousavi Anijdan, M. Shamsodin, M. Farzam, A. Hojjati-Najafabadi, P. Feng, N. Park, and U. Lee, Coatings 13, 188 (2023).

L. M. Hoyos-Palacio, D. P. C. Castro, I. C. Ortiz-Trujillo, L. E. B. Palacio, B. J. G. Upegui, N. J. E. Mora, and J. a. C. Cornelio, J. Mat. Res. Tech. 8, 5893 (2019).

K. H. Kim, K. S. Kim, Y. J. Ji, J. E. Kang, and G. Y. Yeom, Appl. Surf. Sci. 541, 148313 (2021).

M. Momeni, M. Tabibiazar, S. Khorram, M. Zakerhamidi, M. Mohammadifar, H. Valizadeh, and M. Ghorbani, Int. J. Bio. Macromol. 120, 2572 (2018).

M. M. Tahiyat, J. C. Stephens, V. I. Kolobov, and T. I. Farouk, J. Phys. D: Appl. Phys. 55, 085201 (2021).

Y. K. Ezhovskii and S. Mikhailovskii, Russian Microelec. 48, 229 (2019).

J.-M. Park, S. J. Jang, L. L. Yusup, W.-J. Lee, and S.-I. Lee, ACS App. Mat. Inter. 8, 20865 (2016).

P. O. Oviroh, R. Akbarzadeh, D. Pan, R. a. M. Coetzee, and T.-C. Jen, Sci. Tech. Advan. Mat. 20, 465 (2019).

O. A. Hammadi, Mat. Res. Expr. 8, 085013 (2021).

A. A. Anber and F. J. Kadhim, Silicon 10, 821 (2018).

B. K. Nasser and M. A. Hameed, Iraqi J. Appl. Phys. 15, (2019).

A. A. Anber, O. A. Hammadi, and F. J. Kadhim, Iraqi J. Appl. Phys. 17, (2021).

S. H. Faisal, Iraqi J. Appl. Phys. 16, 27 (2020).

R. A. Hassan and F. T. Ibrahim, Iraqi J. Appl. Phys. 17, 3 (2021).

F. J. Al-Maliki and E. A. Al-Oubidy, Phys. B: Conden Mat. 555, 18 (2019).

A. M. Hameed and M. A. Hameed, Emer. Mat. 6, 627 (2023).

A. Frigg, A. Boes, G. Ren, T. G. Nguyen, D.-Y. Choi, S. Gees, D. Moss, and A. Mitchell, APL Phot. 5, 011302 (2020).

A. Vahl, S. Veziroglu, B. Henkel, T. Strunskus, O. Polonskyi, O. C. Aktas, and F. Faupel, Materials 12, 2840 (2019).

M. Ohring, The Materials Science of Thin Films Academic Press. (San Diego, California, Academic Pres, 1992).

P. Martin. 2010, Elsevier Amsterdam.

O. Debieu, R. P. Nalini, J. Cardin, X. Portier, J. Perrière, and F. Gourbilleau, Nanosc. Res. Lett. 8, 1 (2013).

R. Xia, Y. Zhang, Q. Zhu, J. Qian, Q. Dong, and F. Li, J. Appl. Poly. Sci. 107, 562 (2008).

D. Xiang, H. Xia, W. Yang, and P. Mou, Vacuum 165, 172 (2019).

F. Zhou, J. Shan, L. Cui, Y. Qi, J. Hu, Y. Zhang, and Z. Liu, Advan. Funct. Mat. 32, 2202026 (2022).

I. Lisovskyy, M. Voitovych, A. Sarikov, S. Zlobin, A. Lukianov, O. Oberemok, and O. Dubikovsky, J. Non-Crys. Sol. 617, 122502 (2023).

Similar Articles

You may also start an advanced similarity search for this article.