Synthesis and Optical Characterization of (Cu:Se) Nanoparticles Prepared via Atmospheric Pressure Plasma Jet for UV Detector and Gas Sensor Applications

Main Article Content

Doaa Rifaat Jassim
https://orcid.org/0009-0004-5958-3340
Ramiz Ahmed Al-Ansari
Ban H. Adil
https://orcid.org/0000-0003-3598-0101

Abstract

The created copper selenide (Cu:Se) nanoparticles were used in experiments for detecting UV light and in gas sensors. This research prepared Cu:Se nanoparticles with different ratios of 1:9, 2:8, and 3:7 using an atmospheric pressure plasma jet technique. The study looked at the optical properties of Cu:Se nanoparticles using XRD analyses, which showed that adding more Se made the crystals larger. UV–visible spectroscopy and the calculation of band gap energy were performed. All ratios yielded high transmission values, ranging from 80% to 95%. The band gap energy was found to be 3.80 eV, 3.25 eV, and 4.17 eV for the Cu:Se ratios of 1:9, 2:8, and 3:7, respectively, which are typical and excellent values for semiconductors. The prepared Cu:Se nanoparticles demonstrated good optical properties. The optical absorbance of Cu:Se NPs is in order in the wide region of λ = 200 to 350 nm, which is suitable for UV absorbance materials.

Received: Apr. 15, 2024 Revised:   Oct. 31, 2024 Accepted: Nov.22, 2024

Article Details

Section

Articles

How to Cite

1.
Jassim DR, Al-Ansari RA, Adil BH. Synthesis and Optical Characterization of (Cu:Se) Nanoparticles Prepared via Atmospheric Pressure Plasma Jet for UV Detector and Gas Sensor Applications. IJP [Internet]. 2025 Sep. 1 [cited 2025 Sep. 2];23(3):104-13. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1277

References

1. M. K. Khalaf, R. M. S. Al-Alwany, and I. K. Salman, J. Crit. Rev. 7, 171 (2020). https://doi.org/10.1142/S0219581X23500758.

2. H. S. A. Al-Shmgani, W. H. Mohammed, G. M. Sulaiman, and A. H. Saadoon, Artif. Cell. Nanomed. Biotech. 45 (6), 1234 (2016).https://doi.org/10.1080/21691401.2016.1220950.

3. M. K. Ahmed, R. Al-Wafi, S. F. Mansour, S. I. El-Dek, and V. Uskoković, J. Mat. Res. Tech. 9, 3710 (2020). https://doi.org/10.1016/j.jmrt.2020.01.108 .

4. R. Sagheer, S. T. Khadija, Z. N. Kayani, and S. Riaz, Optik 244, 166816 (2021). https://doi.org/10.1016/j.ijleo.2021.166816.

5. T. Tenzin, B. Neena, R. J, P. N. Kumar, and J. M. Shyla, Mat. Sci. Poland 33, 826 (2015). https://doi.org/10.1515/msp-2015-0097.

6. L. N. Nguyen, P. Lamichhane, E. H. Choi, and G. J. Lee, Nanomaterials 11(7), 1678 (2021). https://doi.org/10.3390/nano11071678.

7. J. Wojnarowicz, T. Chudoba, and W. Lojkowski, Nanomaterials 10(6), 1086 (2020). https://doi.org/10.3390/nano10061086.

8. M. Sajjad, I. Ullah, M. I. Khan, J. Khan, M. Y. Khan, and M. T. Qureshi, Res. Phys. 9, 1301 (2018). https://doi.org/10.1016/j.rinp.2018.04.010.

9. D. R. Jassim, R. A. Al-Wasiti, and B. H. Adil, Plasma Med. 13, 31 (2023). https://doi.org/10.1615/PlasmaMed.2023049445.

10. A. N. Mohsin, R. A. Al-Ansari, and B. H. Adil, AIP Conf. Proc. 2437, 020095 (2022). https://doi.org/10.1063/5.0092551.

11. X. Cao, Y. Xie, and L. Li, Adv. Mat. 15, 1914 (2003). https://doi.org/10.1002/adma.200305519.

12. J.-L. Li and X.-Y. Liu, J. Nanosci. Nanotech. 8, 2488 (2008). https://doi.org/10.1166/jnn.2008.502.

13. Y.-Q. Liu, F.-X. Wang, Y. Xiao, H.-D. Peng, H.-J. Zhong, Z.-H. Liu, and G.-B. Pan, Sci. Rep. 4, 5998 (2014). https://doi.org/10.1038/srep05998.

14. F. Jiang, W. Cai, and G. Tan, Nanoscal. Res. Lett. 12, 401 (2017). https://doi.org/10.1186/s11671-017-2165-y.

15. M. R. Scimeca, F. Yang, E. Zaia, N. Chen, P. Zhao, M. P. Gordon, J. D. Forster, Y.-S. Liu, J. Guo, J. J. Urban, and A. Sahu, ACS Appl. Ener. Mat. 2(2), 1517 (2019). https://pubs.acs.org/doi/abs/10.1021/acsaem.8b02118.

16. I. G. Shitu, K. K. Katibi, L. S. Taura, A. Muhammad, I. M. Chiromawa, S. B. Adamu, and S. G. Durumin Iya, Ceram. Int. 49, 12309 (2023). https://doi.org/10.1016/j.ceramint.2022.12.086.

17. T. P. Vinod, X. Jin, and J. Kim, Mat. Res. Bullet. 46, 340 (2011). https://doi.org/10.1016/j.materresbull.2010.12.017.

18. G. K. Prashanth, P. A. Prashanth, P. Singh, B. M. Nagabhushana, C. Shivakumara, G. M. Krishnaiah, H. G. Nagendra, H. M. Sathyananda, and V. Chaturvedi, J. Asian Ceram. Soci. 8, 1175 (2020). https://doi.org/10.1080/21870764.2020.1824328.

19. V. Perumal, U. Hashim, S. C. B. Gopinath, H. Rajintra Prasad, L. Wei-Wen, S. R. Balakrishnan, T. Vijayakumar, and R. A. Rahim, Nanoscal. Res. Lett. 11, 31 (2016). https://doi.org/10.1186/s11671-016-1245-8.

20. M. A. Fakhri, Eng. Tech. J. 32, 1323 (2014).

21. A. A. Ali, Y. S. Rammah, R. El-Mallawany, and D. Souri, Measurement 105, 72 (2017). https://doi.org/10.1016/j.measurement.2017.04.010.

22. A. I. Khudiar, M. K. Khalaf, and A. M. Ofui, Opt. Mat. 114, 110885 (2021). https://doi.org/10.1016/j.optmat.2021.110885.

23. V. I. Klimov, Annual Rev. Phys. Chem. 58, 635 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104537.

24. E. P. Domashevskaya, V. V. Gorbachev, V. A. Terekhov, V. M. Kashkarov, E. V. Panfilova, and A. V. Shchukarev, J. Elect. Spect. Relat. Phenom. 114-116, 901 (2001). https://doi.org/10.1016/S0368-2048(00)00406-0.

25. K. V. Yumashev, V. S. Gurin, P. V. Prokoshin, V. B. Prokopenko, and A. A. Alexeenko, Phys. Stat. Sol. B 224, 815 (2001). https://doi.org/10.1002/(SICI)1521-3951(200104)224:3<815::AID-PSSB815>3.0.CO;2-H.

26. K. V. Yumashev, N. N. Posnov, I. A. Denisov, P. V. Prokoshin, V. P. Mikhailov, V. S. Gurin, V. B. Prokopenko, and A. A. Alexeenko, J. Opt. Soci. America B 17, 572 (2000). https://doi.org/10.1364/JOSAB.17.000572.

27. M. K. Khalaf, F. S. Ahmed, and R. M. S. Al-Alwany, Egyp. J. Chem. 63, 281 (2020). https://doi.org/10.21608/ejchem.2019.17350.2064.

28. H. D. Abdullah, H. F. Al-Taay, M. K. Khalaf, H. F. Oleiwi, and A. J. Rahma, J. Phys. Conf. Ser. 2114, 012074 (2021). https://doi.org/10.1088/1742-6596/2114/1/012074.

29. J. Damisa and J. O. Emegha, Tren. Sci. 18, 16 (2021). https://doi.org/10.48048/tis.2021.16.

30. S. Q. Haza’a and H. R. Shaker, Int. J. Thin Fil. Sci. Tech. 7, 104 (2018). https://doi.org/10.12785/ijtfst/070302.

31. J. O. Emegha, C. M. Okafor, and K. E. Ukhurebor, Walailak J. Sci. Tech. (WJST) 18, 9535 (2021). https://doi.org/10.48048/wjst.2021.9535.

32. A. V. Babalola, V. Oluwasusi, V. A. Owoeye, J. O. Emegha, D. A. Pelemo, A. Y. Fasasi, U. M. Gurku, S. O. Alayande, S. Yusuf, and B. Saje M, Heliyon 10, e23190 (2024). https://doi.org/10.1016/j.heliyon.2023.e23190.

33. M. K. Khalaf, I. A. Mohammed Ali, M. J. Dathaan, and M. I. Hamil, Egyptian J. Chem. 64, 5111 (2021). https://doi.org/10.21608/ejchem.2021.66410.3425.

34. M. Julkarnain, J. Hossain, K. Sharif, and K. Khan, J. Optoelect. Adv. Mat. 13, 485 (2011).

35. A. Hassen, S. El-Sayed, W. Morsi, and A. El Sayed, J. Adv. Phys. 4, 571 (2014).

36. A. S. Hassanien and I. M. El Radaf, Phys B Cond. Matt.. 585, 412110 (2020). https://doi.org/10.1016/j.physb.2020.412110.

37. N. Habubi, S. Oboudi, and S. Chiad, J. Nano Elect. Phys. 4, 04008 (2012).

38. A. F. Qasrawi and A. A. Hamamdah, Microwav. Opt. Tech. Lett. 62, 1453 (2020). https://doi.org/10.1002/mop.32192.

39. M. K. Khalaf, D. S. A. Al-Kader, and J. M. Salh, IOP Conf. Ser.: Mater. Sci. Eng. 1105, 012064 (2021). https://doi.org/10.1088/1757-899X/1105/1/012064.

Similar Articles

You may also start an advanced similarity search for this article.