Effect of Temperature and Acid Molarity on the A.C Conductivity and Dielectric Properties of the Conductive Polymer

Main Article Content

Salma M. Hassan

Abstract

The study included preparing pure polyaniline (PANI) and treating it with sulfuric acid at various strengths while keeping the temperature at 27ºC. The morphology of the polymerization products was examined using a scanning electron microscope (SEM). The SEM images revealed a notable effect of how much acid is present on the formation of PANI. The investigation focused on the relationship of alternating electrical conductivity with temperature and frequency. The A.C. electrical conductivity was represented by the variable (s) and varied with frequency, which ranged from 1 kHz to 10 MHz. The value of s was found to be less than 1, and it decreased as the temperature increased. This observation implies a dominant hopping mechanism. The activation energy was measured within the temperature range of 303-423 K at a frequency of 10 kHz; the measured values ranged from 0.249 to 0.12 eV. The relative dielectric for PANI and the constant loss were determined. The data collected indicated that the actual dielectric constant exhibits a decrease with both frequency and temperature.

Received: Oct. 27,2024 Revised:   Jan. 27, 2024 Accepted:Feb. 13, 2024  

Article Details

Section

Articles

How to Cite

1.
Hassan SM. Effect of Temperature and Acid Molarity on the A.C Conductivity and Dielectric Properties of the Conductive Polymer. IJP [Internet]. 2025 Jun. 1 [cited 2025 Jun. 24];23(2):89-98. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1390

References

1. M. A. Salman, S. M. Hassan, Iraqi Journal of Physics, 19 (48), 33 (2021). DOI: 0.30723/ijp.v19i49.640.

2. C. Yin, C.Pan, X. Liao, Y. Pan, and L. Yuan,. ACS Applied Materials and Interfaces, 13 (33), 39347 (2021). Doi: 10.1021/acsami.1c09722.

3. A. S. Abbood, and I. J. Ibraheem, Baghdad Science Journal, 21 (2), 0401 (2024). Doi.org/10.21123/bsj.2023.8057.

4. S. M. Hasan, Z. A. Hussein, International Journal of Application or Innovation in Engineering and Management, 3(I 1), 486 (2014).

5. P. Luangaramvej, P. Poungsripong, and S. T. Dubas. Polym Int. 71 (1), 139 (2022). Doi.org/10.1002/pi.62947.

6. N. J. Abdullah, S. M. Hassan, and A. F. Essa, AIP conference proceeding, 2372, 130016 (2021). Doi.org/10.1063/5.0065394.

7. N. R. Thakare, S. Sawant, R. N. Bhagat, and S. D. Wakde, International Journal of Advanced Science and Technology, 28 (20), 1238 (2019).

8. Najlaa J. Abdullah, Abbas F. Essa, S. M. Hasan, Iraqi Journal of Science, 62 (1), 138 (2021). Doi:10.24996/ijs.2021.62.1.13.

9. S. Cho, J. S. Lee, and H. Joo. Polymers, 11 (12), 1965 (2019). Doi.org/10.3390/polym111219654.

10. A. A. Morocho, E. APilyuk, V. S. Zakhvalinskii, T. B. Nikulicheva, N. N. Yapryntsev, and V. YuNovikov, Physica B: Condenced Mater, 638, 413927 (2022).

11. N. A. Ali, S. M. Hassan, S. I. Hussein, International Journal of Applied Engineering Research, 12 (24), 14869 (2017).

12. A.L Pang, A.Arsad, and M. Ahmadipour, Polymers for Advanced Technologies, 32 (4), 1428 (2021). DOI.org/10.1002/pat.5201.

13. H. A. Saleh, and H. A. Younis, Egyptian Journal of Chemistry, 65 (1), 199 (2022). Doi:10.21608/EJCHEM.2021.79811.3972.

14. E. Armelin, R. Pla, F. Liesa, X. Ramis, J. I. Iribarren, C. Aleman, Corrosion Science, 50 (3), 721 (2008).

15. M. Fuseini, M. Mahmud, Y. Zaghloul, M. F. Elkady, and A.H.EL-Shazly, J. Mater SCi., 57, 6085 (2022). Doi.org /10.1007/s10853-022-06994-3.

16. K. Gopalakrishnan, S. Poonguzhali, Journal of Chemical and Pharmaceutical Sciences, JCPS, 9 (2), 273 (2016).

17. D. Priyanka, K. S. Venkatesh, Journal of Engineering Research and Applications, 5 (12), 53 (2015).

18. Zulkhairi Zakaria, Nurul F. A. Halim, Mubaraq H. V. Schleusingen, A. K. M. Shafiqul Islam, Uda Hashim, and Mohd N. Ahmad, Journal of Nanomaterials, 2015, Article ID 218204, 6 pages http://dx.doi.org/10.1155/2015/218204.

19. A. A. Hassan and M. G. Hammed, Journal of physics: Conference series (AiCIS), 2020, IOP Publishing, Doi:10.1088/1742-6596/1829/1/012009.

20. A. Mohammed, M. Ghazi and M. H. Suhail. Iraqi Journal of Physics, 15 (33), 122 (2017).

21. K. Gupta, G. Chakraborty, P. C. Jana and A. K. Meikap, Journal of Physical Sciences, 13, 251 (2009).

22. Y. Furukawa and D. Shimokawa, Bulletin of the Chemical Society of Japan, 96 (11), 1243 (2023). Doi.org /10.1246/bcsj.20230175.

23. S. C. Racavendra, S. Khasim, M. Revanasiddappa, Bull. Mater. Sci., 26 (7), 733 (2003).

24. M. M. El-Nahass, A. M. Farid, K. F. Abd El-Rahman, H. A. M. Ali, Physical B, 403, 23331 (2008).

25. N. A. V. Santos, M. T. R. Pulido, D. V. Tumacdera, K. L. M. Taaca, Carbohydrate Polymer Technologies and Applications, 2, 100129 (2021). Doi.org/10.1016/j.carpta.2021.100129.

26. O. Folorunso, P. Olukanmi, and S. Thokozani, Materials Today Communication, 35, 106308 (2023). Doi.org/10.1016/j.mtcomm.2023.106308.

Similar Articles

You may also start an advanced similarity search for this article.