Wide band photoconductive detector based on carbon nanotubes decorated with silver nanoparticles

Main Article Content

Taqwa Y.Yousif
https://orcid.org/0009-0008-4873-3728
Shahd Imad Hasan
Asama N.Naji
https://orcid.org/0000-0002-9865-9721
Estabraq A. Abed

Abstract

This article outlines the methodical process of manufacturing MWCNTs/SWCNTs-Ag and analyzing wideband photodetectors using a combination of electro-explosion techniques, direct mixing, and drop casting techniques. The microstructural, optical, electrical, and photo-responsive analyses of the fabricated layers were thoroughly investigated. The topographical study specifically showed that the diameter ranges from 58 to 82 nm for Ag-NPs. However, the optical spectra of the prominent layers revealed a broad absorption phenomenon along the 200–800 nm scanning wavelength. Simultaneously, the devices fabricated from SWCNTs/MWCNTs-Ag showed significant figures of merit as a function of wavelength and illumination power (365, 460, and 808 nm) in response to the applied bias voltage from 0 to 10 V. In detail, the values attained were 0.575 and 0.06 (A/W) under the 808 nm illumination wavelength for MWCNTs-Ag and SWCNTs-Ag, respectively. The figures of merit characteristics of the fabricated devices were found to be in positive linear correlation as a function of the applied wavelength.

Received: Aug. 05, 2024 Revised: Dec. 25, 2025 Accepted: Jan. 27, 2025

Article Details

Section

Articles

How to Cite

1.
Y.Yousif T, Hasan SI, N.Naji A, Abed EA. Wide band photoconductive detector based on carbon nanotubes decorated with silver nanoparticles. IJP [Internet]. 2025 Sep. 1 [cited 2025 Sep. 1];23(3):95-103. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1354

References

J. Pitroda, B. Jethwa, S.K. Dave. International Journal of Constructive Research in Civil Engineering 2, 36 (2016). https://doi.org/10.20431/2454-8693.0205007.

2. H. Chen, N. Xi, K.W. C. Lai, C. K. M. Fung, and R. Yang. IEEE Transactions on Nanotechnology, 9, 582 (2010). https://doi.org/10.1109/TNANO.2010.2053216.

3. D. S. Ahmed, M. R. Mohammed and M. K.A. Mohammed. Nanoscience & Nanotechnology-Asia. 10, 127 (2020). https://doi.org/10.2174/2210681208666181005145644.

4. A. S. Lanje, S. J. Sharma and R. B. Pode. Scholars Research Library Archives of Physics Research, 1, 49 (2010).

5. D. N. Travessaa, F. S. da Silvab, F. H. Cristovana, A. M. Jorge Jr.c, K. R. Cardosoa. Materials research, 17, 687 (2014). https://doi.org/10.1590/S1516-14392014005000026.

6. T. Y. Yousif, A. N. Naje. Journal of Physics: Conference Series, IOP Publishing, 1879, 032093 (2021). https://doi.org/10.1088/1742-6596/1879/3/032093.

7. X. He, F. Léonard, and J. Kono, Advanced Optical Materials. 3, 989 (2015). https://doi.org/10.1002/adom.201500237.

8. L. Liu, Y. Zhang. Sensor and Actuators A. 116, 394-397 (2004).

9. T. Ma, N. Xue, A. Muhammad, G. Fang, J. Yan, R. Chen, J. Sun, X. Sun. Micromachines. 15, 1249 (2024). https://doi.org/10.3390/mi15101249.

10. Asama N.Naje, Ola A. Noori. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 4, 105 (2015).

11. S. Kunwar, S. Pandit, J.‑H. Jeong, J. Lee. Nano-Micro Lett. 12, (2020). https://doi.org/10.1007/s40820-020-00437-x.

12. E. Y. Salih, M. B. A. Bashir, A. H. Rajpar, I. A. Badruddin, and G. Bahmanrokh, Microelect. Eng. 258, 111758 (2022). https://doi.org/10.1016/j.mee.2022.111758.

13. F. Salleh, R. Usop, N. S. Saugi, E. Y. Salih, M. Mohamad, H. Ikeda, M. F. Mohd Sabri, M. K. Ahmad, and S. M. Said, Appl. Surf. Sci. 497, 143736 (2019). https://doi.org/10.1016/j.apsusc.2019.143736

14. E. Y. Salih, A. Ramizy, O. Aldaghri, M. F. Sabri, N. Madkhali, T. Alinad, K. H. Ibnaouf, and M. H. Eisa, Nanomaterials 12, 1477 (2022). https://doi.org/10.3390/nano12091477.

15. V. S. Manikandan, S. Athithya, S. Harish, J. Archana, and M. Navaneethan, Opt. Mat. 134, 113086 (2022). https://doi.org/10.1016/j.optmat.2022.113086.

16. A. Pelella, D. Capista, M. Passacantando, E. Faella, A. Grillo, F. Giubileo, N. Martucciello, and A. Di Bartolomeo, Adv. Elect. Mat. 9, 2200919 (2023). https://doi.org/10.1002/aelm.202200919.

17. C. Archana, S. Harish, R. Abinaya, J. Archana, and M. Navaneethan, Sens. Actuat. A Phys. 348, 113938 (2022). https://doi.org/10.1016/j.sna.2022.113938.

18. X. Chen, D. Bagnall, and N. Nasiri, ACS Appl. Mat. Interf. 16, 27614 (2024). https://doi.org/10.1021/acsami.4c02284.

19. Y.-H. Lin, P.-S. Lee, Y.-C. Hsueh, K.-Y. Pan, C.-C. Kei, M.-H. Chan, J.-M. Wu, T.-P. Perng, and H. C. Shih, J. Electrochem. Soc. 158, K24 (2011). https://doi.org/10.1149/1.3522764.

20. P. Sen, J. Ghosh, A. Abdullah, P. Kumar, and Vandana, J. Chem. Sci. 115, 499 (2003). https://doi.org/10.1007/BF02708241.

21. I. W. Sutapa, A. W. Wahab, P. Taba, and N. L. Nafie, J. Phys. Conf. Ser. 979, 012021 (2018). https://doi.org/10.1088/1742-6596/979/1/012021.

22. A. Amirjani and D. F. Haghshenas, Sens. Actuat. B Chem. 273, 1768 (2018). https://doi.org/10.1016/j.snb.2018.07.089.

23. D. Verma, D. Chauhan, M. Das Mukherjee, K. R. Ranjan, A. K. Yadav, and P. R. Solanki, J. Appl. Electrochem. 51, 447 (2021). https://doi.org/10.1007/s10800-020-01511-3.

24. M. A. Reshchikov, J. Appl. Phys. 129, 121101 (2021). https://doi.org/10.1063/5.0041608.

25. Y. Yomogida, K. Horiuchi, R. Okada, H. Kawai, Y. Ichinose, H. Nishidome, K. Ueji, N. Komatsu, W. Gao, J. Kono, and K. Yanagi, Sci. Rep. 12, 101 (2022). https://doi.org/10.1038/s41598-021-03911-7.

26. H.-S. Kim and K.-U. Jang, J. Korean Instit. Elect. Elect. Mat. Eng. 26, 325 (2013). https://doi.org/10.4313/JKEM.2013.26.4.325.

27. R. Saive, IEEE J. Photovolt. 9, 1477 (2019). https://doi.org/10.1109/JPHOTOV.2019.2930409.

28. E. Y. Salih, Opt. Mat. 149, 115120 (2024). https://doi.org/10.1016/j.optmat.2024.115120.

29. Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J.-H. Ahn, E. Hwang, and J. H. Cho, Carbon 88, 165 (2015). https://doi.org/10.1016/j.carbon.2015.02.071.

30. S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, ACS Nano 8, 8285 (2014). https://doi.org/10.1021/nn502715h.

31. D. Capista, M. Passacantando, L. Lozzi, E. Faella, F. Giubileo, and A. Di Bartolomeo, Electronics 11, 271 (2022). https://doi.org/10.3390/electronics11020271.

32. L. Zhuo, P. Fan, S. Zhang, X. Liu, X. Guo, Y. Zhang, Y. Zhan, D. Li, Z. Che, W. Zhu, H. Zheng, J. Tang, J. Zhang, Y. Zhong, Y. Luo, J. Yu, and Z. Chen, Nanoscale 12, 14188 (2020). https://doi.org/10.1039/D0NR00139B.

33. N. Fu, J. Zhang, Y. He, X. Lv, S. Guo, X. Wang, B. Zhao, G. Chen, and L. Wang, Sensors 23, 3104 (2023). https://doi.org/10.3390/s23063104.

Similar Articles

You may also start an advanced similarity search for this article.